Quasi-permutation modules over finite groups

By Shizuo ENDO and Takehiko MIYATA

(Received March 27, 1972)

Let Π be a finite group. A finitely generated Z-free Π -module is briefly called a Π -module. A Π -module is called a permutation Π -module if it is expressible as a direct sum of some $\{Z\Pi/\Pi_i\}$ where each Π_i is a subgroup of Π . Further a Π -module M is called a quasi-permutation Π -module if there exists an exact sequence: $0 \rightarrow M \rightarrow S \rightarrow S' \rightarrow 0$ where S and S' are permutation Π -modules.

In [2] we have studied the properties of quasi-permutation modules in relation with a problem in invariant theory. In this paper we will give some basic results on quasi-permutation modules as a continuation to [2].

First we will consider projective quasi-permutation Π -modules.

Let R be a Dedekind domain and K be the quotient field of R. Let Σ be a separable K-algebra and Λ be an R-order in Σ . Denote by $P(\Lambda)$ the set of all isomorphism types of finitely generated projective (left) Λ -modules and put $P_0(\Lambda) = \{ [P] \in P(\Lambda) | P \text{ is locally free} \}$. Let $P_0(\Lambda)$ be the Grothendieck group of $P_0(\Lambda)$. We define an epimorphism $\mu_A : P_0(\Lambda) \to Z$ by $\mu_A([P_1]-[P_2]) = \operatorname{rank}_{\Sigma}^* KP_1 - \operatorname{rank}_{\Sigma} KP_2$. Now we put $C(\Lambda) = \operatorname{Ker} \mu_A$ and call this the (reduced) projective class group of Λ (cf. [5], [11]). Especially, if Λ is commutative, then $C(\Lambda)$ is isomorphic to the Picard group of Λ . Further let Ω be a maximal R-order in Σ which contains Λ . We define a homomorphism: $\nu_{\alpha/A}: C(\Lambda) \to C(\Omega)$ by $\nu_{\alpha/A}([P_1]-[P_2])=[\Omega \bigotimes_A P_1]-[\Omega \bigotimes_A P_2]$. Then it is known that $\nu_{\alpha/A}$ is an epimorphism but not always a monomorphism. Hence putting $\widetilde{C}(\Lambda) = \operatorname{Ker} \nu_{\alpha/A}$, we have an exact sequence:

$$0 \longrightarrow \widetilde{C}(\Lambda) \longrightarrow C(\Lambda) \longrightarrow C(\Omega) \longrightarrow 0.$$

Especially let $\Lambda = Z\Pi$ and let Ω_{Π} be a maximal order in $Q\Pi$ which contains $Z\Pi$. Then, by the Swan's theorem ([11]), we have $P_0(Z\Pi) = P(Z\Pi)$ and $\tilde{C}(Z\Pi) = \{ [\mathfrak{a}] - [Z\Pi] \in C(Z\Pi) | \mathfrak{a} \text{ is a projective (left) ideal of } Z\Pi \text{ such}$ that $\Omega_{\Pi}\mathfrak{a} \oplus \Omega_{\Pi} \cong \Omega_{\Pi} \oplus \Omega_{\Pi}$ as Ω_{Π} -modules}. It is noted that $\tilde{C}(Z\Pi)$ does not depend on the choice of Ω_{Π} (cf. [3]). On the other hand, we put $C^q(Z\Pi) =$ $\{ [\mathfrak{a}] - [Z\Pi] \in C(Z\Pi) | \mathfrak{a} \text{ is a quasi-permutation projective (left) ideal of } Z\Pi \}.$ Then it is easily seen that $C^q(Z\Pi)$ is also a subgroup of $C(Z\Pi)$.

Let Π be a cyclic group of order n and σ be a generator of Π . We