An addition formula for Kodaira dimensions of analytic fibre bundles whose fibres are Moišezon manifolds

By Iku NAKAMURA and Kenji UENO*

(Received Feb. 10, 1972) (Revised Oct. 7, 1972)

§0. Introduction.

Let K_M be the canonical line bundle of a compact complex manifold M. If dim $H^0(M, \mathcal{O}(K_M^{\otimes m})) = N+1 \ge 2$ we have a meromorphic mapping $\Phi_{mK}: M \to P^N$ of M into P^N . When m is a positive integer the meromorphic mapping Φ_{mK} is called pluricanonical mapping. In this case the Kodaira dimension $\kappa(M)$ of M is, by definition

 $\kappa(M) = \max_{m \in L} \dim \Phi_{mK}(M) ,$

where $L = \{m \in \mathbb{N} \mid \dim H^0(M, \mathcal{O}(K_M^{\otimes m})) \ge 2\}$. When $H^0(M, \mathcal{O}(K_M^{\otimes m})) = 0$ for all positive integers, we define the Kodaira dimension $\kappa(M)$ of M to be $-\infty$. When $\dim H^0(M, \mathcal{O}(K_M^{\otimes m})) \le 1$ for all positive integers m and there exists a positive integer m_0 such that $\dim H^0(M, \mathcal{O}(K_M^{\otimes m_0})) = 1$, we define $\kappa(M) = 0$. As for the fundamental properties of Kodaira dimension, see [3].

By a Moišezon manifold V we mean an n-dimensional compact complex manifold that has n algebraically independent meromorphic functions.

The main purpose of the present paper is to prove the following

MAIN THEOREM. Let $\pi: M \to S$ be a fibre bundle over a compact complex manifold S whose fibre and structure group are a Moišezon manifold V and the group Aut(V) of analytic automorphisms of V respectively. Then we have an equality

$$\kappa(M) = \kappa(V) + \kappa(S) \, .$$

To prove Main Theorem we need to analyze the action of Aut (V) on the vector space $H^{0}(V, \mathcal{O}(K_{V}^{\otimes m}))$. More generally the group Bim (V) of all bimeromorphic mappings of V acts on $H^{0}(V, \mathcal{O}(K_{V}^{\otimes m}))$ for any positive integer m. Hence we have a representation ρ_{m} : Bim $(V) \rightarrow GL(H^{0}(V, \mathcal{O}(K_{V}^{\otimes m})))$. We call this representation pluricanonical representation. A group G is called periodic if each element g of G is of finite order. In §1 we shall prove the following

^{*} Partially supported by The Sakkokai Foundation.