Finite groups with central Sylow 2-intersections

By Kensaku Gomi

(Received July 6, 1972)

§ 1. Introduction.

The purpose of this paper is to clarify the structure of finite groups which satisfy the following condition:
(CI): The intersection of any two distinct Sylow 2-groups is contained in the center of a Sylow 2-group.

From now on, we call a finite group a (CI)-group if it satisfies (CI). The main result is the following:

Theorem 1. Let G be a (CI)-group. Then one of the following statements holds.
(1) G is a solvable group of 2 -length 1 .
(2) A Sylow 2-group of G is Abelian.
(3) G has a normal series $1 \leqq N<M \leqq G$ where N and G / M have odd order and M / N is the central product of an Abelian 2-group and a group isomorphic to $S L(2,5)$.
(4) G contains a normal subgroup M of odd index in G which satisfies one of the following conditions:
(4.1) M is the direct product of an Abelian 2-group and a group isomorphic to $\operatorname{Sz}(q), \operatorname{PSU}(3, q)$ or $\operatorname{SU}(3, q), q$ a 2 -power >2.
(4.2) M is the central product of an Abelian 2-group and a non-trivial perfect central extension of $S z(8)$.

If we combine Theorem 1 with the theorems of Walter [13] and Bender [2], we obtain the following result.

Theorem 2. A non-Abelian simple (CI)-group is isomorphic to one of the following groups:
$\operatorname{PSL}(2, q), q \equiv 0,3,5(\bmod 8)$,
$J R$,
$S z(q)$ or
$\operatorname{PSU}(3, q), q$ a power of 2 .
Here $J R$ denotes the simple groups with Abelian Sylow 2-groups in which the centralizer of an involution t is a maximal subgroup and isomorphic to $\langle t\rangle \times E$ where $P S L(2, q) \leqq E \leqq P \Gamma L(2, q)$ with odd $q>3$. This definition is due

