On pseudoconvexity of complex abelian Lie groups

By Hideaki KAZAMA

(Received March 25, 1972) (Revised Sept. 20, 1972)

§1. Introduction.

The purpose of this paper is to prove the following theorem.

THEOREM. Let G be a complex abelian Lie group of complex dimension π and K the maximal compact subgroup of the connected component of G with Lie algebra \mathfrak{k} . Let q be the complex dimension of $\mathfrak{k} \cap \sqrt{-1}\mathfrak{k}$. Then there exists: a real-valued C^{∞} function φ on G satisfying the following conditions:

(1) The Levi form of φ :

$$L(\varphi, x) = \sum_{i,j=1}^{n} \frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j} dz_i d\bar{z}_j$$

is positive semi-definite and has n-q positive eigenvalues at every point x of G, where (z_1, z_2, \dots, z_n) denotes a system of coordinates in some neighborhood of x.

(2) The set

$$G_c = \{g \in G : \varphi(g) < c\}$$

is a relatively compact subset of G for any $c \in \mathbf{R}$.

By the above theorem any complex abelian Lie group is always pseudoconvex. In the last part we shall find a complex Lie group of arbitrary dimension, on which every holomorphic function is a constant and which is pseudoconvex and 1-complete.

The author is very grateful to Professor J. Kajiwara for his continuous encouragement.

§2. Proof of Theorem.

Since all connected components of G are biholomorphically isomorphic, we may assume that G is connected. Let \mathbb{O} be the sheaf of all germs of holomorphic functions on G. We put

$$G^{\scriptscriptstyle 0} = \{g \in G : f(g) = f(e) \text{ for all } f \in H^{\scriptscriptstyle 0}(G, \mathbb{Q})\}$$

where e is the unit element of G. Then Morimoto [5] proved that G^0 is a complex abelian Lie subgroup of G and that every holomorphic function on