A generalised combinatorial distribution problem

By G. Baikunth NATH

(Received March 17, 1972)
(Revised Aug. 3, 1972)

§ 1. Introduction and summary.

Let $A=\left(a_{i j}\right)$ be a square matrix of size n and let the entries of A be non-negative integers. Denote the sum of row i of A by $r_{i}, r_{i} \geqq 0$, and that of the column j of A by $s_{j}, s_{j} \geqq 0$. If T denotes the total sum in A, then it is clear that

$$
\begin{equation*}
T=\sum_{i=1}^{n} r_{i}=\sum_{j=1}^{n} s_{j} . \tag{1.1}
\end{equation*}
$$

We call $R=\left(r_{1}, r_{2}, \cdots, r_{n}\right)$ the row sum vector and $S=\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ the column sum vector of A. The vectors R and S determine a class

$$
\begin{equation*}
G=G(R, S), \tag{1.2}
\end{equation*}
$$

consisting of all such matrices of size n, with row sum vector R and column sum vector S. For A admitting integers 0 and 1 only, known as (0,1)-matrix, many diversified topics including traces, term ranks, widths, heights, and combinatorial designs related to problems dealing with a class G^{\prime}, a subclass of G, consisting of (0,1)-matrices, have attracted the attention of many authors. Among them are Ryser (1957, 1960a, 1960b), Jurkat and Ryser (1967), and Murty (1968). A detailed list of references may be found in Ryser (1960a).

Let $H(n, R, S)$ denote the number of members of class G, that is the number of ways in which n distinct things, the j-th replicated s_{j} times, $s_{j} \geqq 0$, can be distributed among n persons, the i-th getting $r_{i}, r_{i} \geqq 0$. The case, when each row sum and column sum equals $r(\geqq 1)$, and the number $H(n, R, R)$ denoted by $H(n, r)$, has been investigated by Kenji Mano (1961). He gives an intricate formula for $r=2$. Anand et al. (1966) extended the result to $H(3, r)$ and stated a plausible formula for $H(n, r)$. Recently, Nath and Iyer (1972) have suggested the use of the generating functions to expedite calculations and obtained explicit formulae for $H(3, r)$ and $H(4, r)$.

In the present paper, we give some inequalities for $H(n, R, S)$, true for all positive n, and an explicit formula for $H(3, R, S)$. The procedure applies to rectangular matrices as well as square ones.

