An extended relativization theorem

By Nobuyoshi MOTOHASHI

(Received Jan. 31, 1972)

Let L be the first order infinitary logic $L_{\omega_1\omega}$ (cf. Feferman [2]) without individual constants or function symbols, V an unary predicate symbol not in L, and L(V) the first order logic obtained from L by adding V as a new predicate symbol. For any formula A in L, we denote by A^{ν} , the formula in L(V) obtained from A by relativizing every quantifier in A by V. Then, we have

RELATIVIZATION THEOREM. Let A, B be any sentences in L. If $(\exists v)V(v)$ $\vdash A^{v} \supset B$, then there is an existential sentence C such that $\vdash A \supset C$ and $\vdash C \supset B$. (Cf. Motohashi [5].)

This theorem is a syntactical counterpart of Los-Tarski's theorem on extensions in model theory.

In this paper, we shall extend this theorem to a form which can be considered as a syntactical counterpart of Chang-Los' theorem on ω -ascending unions (cf. Chang [1]), Keisler's theorem on unions (cf. Keisler [3]) and Nebres' theorem on unions (cf. Nebres [8]). To accomplish this purpose we use a binary predicate symbol U(*, *) instead of the unary predicate symbol V(*) and a two sorted first order logic L(U), which has two kinds of (individual) variables such as x, y, \cdots (free variables of type 1), u, v, \cdots (bound variables of type 1), α, β, \cdots (free variables of type 2) and ξ, η, \cdots (bound variables of type 2). We assume that every variables in L is of type 1 and every atomic formula in L(U) has one of the forms: $U(\alpha, x)$ or $P(x_1, \dots, x_n)$, where P is a predicate symbol in L. For any free variable α of type 2 and any formula A in L, A^{α} is the formula in L(U) obtained from A by relativizing every quantifier in A by $U(\alpha, *)$. Then we have

MAIN THEOREM. Let k be a non negative integer and A, B sentences in L. If $(\forall \xi)(\exists u) U(\xi, u), (\forall u_1) \cdots (\forall u_k)(\exists \xi)(U(\xi, u_1) \land \cdots \land U(\xi, u_k)) \underset{L(U)}{\vdash} (\forall \xi) A^{\xi} \supset B$, then there is a sentence C of the form $C = (\forall u_1) \cdots (\forall u_k) E(u_1, \cdots, u_k)$ such that $\vdash A \supset C$ and $\vdash C \supset B$, where $E(x_1, \cdots, x_k)$ is an existential formula in L.

This theorem implies the relativization theorem as a special case k=0. For simplicity we shall prove this theorem in the case k=1, L is finitary and has no equality symbol: There is no difficulty to prove it in general