Primitive extensions of rank 4 of multiply transitive permutation groups

 (Part I. The case where all the orbits are self-paired)

 (Part I. The case where all the orbits are self-paired)}

By Eiichi Bannai*)

(Received Dec. 6, 1971)

Introduction.

In [1] the author has determined the permutation groups which are primitive extensions of rank 3 of 4 -ply transitive permutation groups. This note is a continuation of [1], and here we consider primitive extensions of rank 4 of multiply (5 -ply) transitive permutation groups. Here we say that. a permutation group (\mathscr{B}, Ω) is a primitive extension of rank r of a (transitive) permutation group (G, Δ) if the following conditions are satisfied: (i). \mathscr{S}° is primitive and of rank r on the set Ω, and (ii) there exists an orbit $\Delta(a)$. of the stabilizer $\mathscr{E}_{a}(a \in \Omega)$ such that the action of \mathscr{G}_{a} on $\Delta(a)$ is faithful and that $\left(\mathbb{C}_{a}, \Delta(a)\right)$ and (G, Δ) are isomorphic as permutation groups.

In this note we will prove the following theorem:
Theorem 1. Let (G, Δ) be a 5-ply transitive permutation group. If (G, Δ), has a primitive extension of rank $4(\mathbb{C}, \Omega)$ such that the orbits of $\mathbb{G}_{a}(a \in \Omega)$ on Ω are all self-paired, then (i) $|\Delta|=7$ and $G=S_{7}$ or A_{7} (symmetric and alternating groups on 7 letters, respectively) ${ }^{1)}$, or (ii) $|\Delta|=379,1379,3404,6671,18529$. or 166754 and $G \neq S_{|\Delta|}, A_{|\Delta|}$.

In the present note we devote ourselves to the case where all orbits are self-paired. The remaining case where there exists non-self-paired orbit will be treated in a subsequent paper. There it will be shown that any 4 -ply transitive permutation group (G, Δ) has no primitive extension of rank 4 (\mathscr{C}, Ω) such that there exist non-self-paired orbits. Thus the determination of primitive extensions of rank 4 of 5 -ply transitive permutation group is almost completed.

Our main idea of the proof of Theorem 1 is indebted to the concept of intersection matrices due to D.G. Higman [3], and is also indebted to some results of W.A. Manning (cf. P. J. Cameron [2]).

Just before this work has been done, S. Iwasaki has determined the pri-

[^0]
[^0]: *) Supported in part by the Fujukai Foundation.

 1) In these cases (G, Δ) have indeed primitive extensions of rank $4(\mathscr{G}, \Omega)$ with. regular normal subgroup of order 64.
