Primitive extensions of rank 4 of multiply transitive permutation groups

(Part I. The case where all the orbits are self-paired)

By Eiichi BANNAI*)

(Received Dec. 6, 1971)

Introduction.

In [1] the author has determined the permutation groups which are primitive extensions of rank 3 of 4-ply transitive permutation groups. This, note is a continuation of [1], and here we consider primitive extensions of rank 4 of multiply (5-ply) transitive permutation groups. Here we say that, a permutation group (\mathfrak{G}, Ω) is a primitive extension of rank r of a (transitive) permutation group (\mathfrak{G}, Λ) if the following conditions are satisfied: (i) \mathfrak{G} is primitive and of rank r on the set Ω , and (ii) there exists an orbit $\Lambda(a)$ of the stabilizer \mathfrak{G}_a ($a \in \Omega$) such that the action of \mathfrak{G}_a on $\Lambda(a)$ is faithful and that ($\mathfrak{G}_a, \Lambda(a)$) and (G, Λ) are isomorphic as permutation groups.

In this note we will prove the following theorem:

THEOREM 1. Let (G, Δ) be a 5-ply transitive permutation group. If (G, Δ) , has a primitive extension of rank $4(\mathfrak{G}, \Omega)$ such that the orbits of \mathfrak{G}_a $(a \in \Omega)$ on Ω are all self-paired, then (i) $|\Delta| = 7$ and $G = S_7$ or A_7 (symmetric and alternating groups on 7 letters, respectively)¹³, or (ii) $|\Delta| = 379, 1379, 3404, 6671, 18529$ or 166754 and $G \neq S_{|\Delta|}$, $A_{|\Delta|}$.

In the present note we devote ourselves to the case where all orbits are self-paired. The remaining case where there exists non-self-paired orbit will be treated in a subsequent paper. There it will be shown that any 4-ply transitive permutation group (G, Δ) has no primitive extension of rank 4. (\mathfrak{G}, Ω) such that there exist non-self-paired orbits. Thus the determination of primitive extensions of rank 4 of 5-ply transitive permutation group is almost completed.

Our main idea of the proof of Theorem 1 is indebted to the concept of intersection matrices due to D.G. Higman [3], and is also indebted to some results of W.A. Manning (cf. P.J. Cameron [2]).

Just before this work has been done, S. Iwasaki has determined the pri-

^{*)} Supported in part by the Fujukai Foundation.

¹⁾ In these cases (G, Δ) have indeed primitive extensions of rank 4 ((\mathfrak{G}, Ω)) with regular normal subgroup of order 64.