The nullity spaces of the conformal curvature tensor

By Masami Sekizawa

(Received March 25, 1972)

§ 1. Introduction.

A. Gray [2] has studied the nullity space of the Riemannian tensor which is a tensor field of type $(1,3)$ on a Riemannian manifold having the same formal properties as the curvature tensor field, and unified the studies of the nullity spaces of several tensor fields. But the Weyl conformal curvature tensor C on a Riemannian manifold is not a Riemannian tensor. It is invariant under a conformal change of the metric and vanishes identically on 3 -dimensional Riemannian manifold. The invariant tensor on 3 -dimensional Riemannian manifold is the tensor field c defined by (2.7) in $\S 2$.

We shall define the nullity space \mathcal{C}_{p} of the conformal curvature tensor as the subspace of the tangent space $T_{p}(M)$ at $p \in M$ spanned by $X \in T_{p}(M)$ such that $C_{X Y}=0$ and $c(X, Y)=0$ for any $Y \in T_{p}(M)$, and prove that a maximal integral manifold of the distribution $p \rightarrow \mathcal{C}_{p}$ is totally umbilic and conformally flat.

I should like to express my hearty gratitude to Prof. S. Tachibana for his kind suggestions and many valuable advices.

§ 2. Conformal curvature tensor.

Throughout this paper, we denote by M an n-dimensional differentiable Riemannian manifold of class $C^{\infty}(n>2)$, by $T_{p}(M)$ the tangent space of M at $p \in M$. Let $\mathfrak{F}(M)$ be the algebra of differentiable real-valued functions on $M, \mathfrak{X}(M)$ the Lie algebra of differentiable vector fields on M. The metric tensor field will be denoted by \langle,$\rangle , the Riemannian connection by \nabla_{X}(X \in$ $\mathfrak{X}(M))$, and the curvature operator by $R_{X Y}=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}(X, Y \in \mathfrak{X}(M))$. The tensors on each tangent space determined by the tensor fields will be denoted by the same symbols. The Weyl conformal curvature tensor on M is the tensor field C of type $(1,3)$ defined by

$$
\begin{gather*}
C_{X Y} Z=R_{X Y} Z+(1 /(n-2))\{S(X, Z) Y-S(Y, Z) X+\langle X, Z\rangle Q Y-\langle Y, Z\rangle Q X\} \tag{2.1}\\
\\
-(K /(n-1)(n-2))\{\langle X, Z\rangle Y-\langle Y, Z\rangle X\}
\end{gather*}
$$

for any $X, Y, Z \in \mathfrak{X}(M)$, where we denote by S, Q and K the Ricci tensor,

