The nullity spaces of the conformal curvature tensor

By Masami SEKIZAWA

(Received March 25, 1972)

§ 1. Introduction.

A. Gray [2] has studied the nullity space of the Riemannian tensor which is a tensor field of type (1,3) on a Riemannian manifold having the same formal properties as the curvature tensor field, and unified the studies of the nullity spaces of several tensor fields. But the Weyl conformal curvature tensor C on a Riemannian manifold is not a Riemannian tensor. It is invariant under a conformal change of the metric and vanishes identically on 3-dimensional Riemannian manifold. The invariant tensor on 3-dimensional Riemannian manifold is the tensor field c defined by (2.7) in § 2.

We shall define the nullity space \mathcal{C}_p of the conformal curvature tensor as the subspace of the tangent space $T_p(M)$ at $p \in M$ spanned by $X \in T_p(M)$ such that $C_{XY} = 0$ and c(X,Y) = 0 for any $Y \in T_p(M)$, and prove that a maximal integral manifold of the distribution $p \to \mathcal{C}_p$ is totally umbilic and conformally flat.

I should like to express my hearty gratitude to Prof. S. Tachibana for his kind suggestions and many valuable advices.

§ 2. Conformal curvature tensor.

Throughout this paper, we denote by M an n-dimensional differentiable Riemannian manifold of class C^{∞} (n>2), by $T_p(M)$ the tangent space of M at $p\in M$. Let $\mathfrak{F}(M)$ be the algebra of differentiable real-valued functions on M, $\mathfrak{X}(M)$ the Lie algebra of differentiable vector fields on M. The metric tensor field will be denoted by $\langle \ , \ \rangle$, the Riemannian connection by V_X $(X\in\mathfrak{X}(M))$, and the curvature operator by $V_X = [V_X, V_Y] - V_{(X,Y)}$ $(X, Y\in\mathfrak{X}(M))$. The tensors on each tangent space determined by the tensor fields will be denoted by the same symbols. The Weyl conformal curvature tensor on M is the tensor field C of type (1,3) defined by

$$(2.1) C_{XY}Z = R_{XY}Z + (1/(n-2))\{S(X,Z)Y - S(Y,Z)X + \langle X,Z\rangle QY - \langle Y,Z\rangle QX\}$$
$$-(K/(n-1)(n-2))\{\langle X,Z\rangle Y - \langle Y,Z\rangle X\}$$

for any X, Y, $Z \in \mathfrak{X}(M)$, where we denote by S, Q and K the Ricci tensor.