J. Math. Soc. Japan Vol. 25, No. 1, 1973

Scattering theory for differential operators, I, operator theory

By S.T. KURODA

(Received Dec. 21, 1971) (Revised Aug. 31, 1972)

§1. Introduction.

The present paper is intended to be the first of a series of papers aimed at dealing with a spectral and scattering theory for some partial differential operators by application of the so-called abstract stationary method. We take the attitude of studying problems in operator-theoretical terms as far as possible and then handling differential operators by applying the obtained results.

Some problems considered in the mathematical theory of scattering are: i) to investigate the structure of the absolutely continuous spectrum of a perturbed operator; ii) to prove the existence and the completeness of wave operators; iii) to establish the discreteness, as defined in §5, of the singular spectrum; and iv) to construct eigenfunction expansions. Among many works concerning these problems we only mention a work of Ikebe in 1960 ([5]) and a group of more recent works on the abstract stationary method¹⁾ ([11], [9], [14]). In [5] Ikebe treated the Schrödinger operator $-\mathcal{A}+q(x)$ by the integral equation method under the main assumption that $q(x) = O(|x|^{-a})$, $\delta > 2$, as $|x| \to \infty$. With the aid of a theorem of Kato [7] concerning the growth property of the solution of $-\Delta u + qu = \lambda u$, he solved i)-iv) with a sharper result that there is no singular continuous spectrum except for nonpositive eigenvalues. (The method was later applied to exterior problems in [17], [6], etc.) On the other hand, it was shown in [11] etc. that problems i) and ii) (and iv) partly) can be handled by the abstract stationary method. In particular, it was shown by Kato [9] that problems i) and ii) for Schrödinger operators can be solved for $\delta > 1$ and that the sharper result as Ikebe's holds for $\delta > 5/4$. Some more results were announced in [14].

Recently, S. Agmon investigated the spectral problem of differential operators by a new method based on a weighted elliptic estimate and an-

¹⁾ For an overall exposition of the scattering theory with an extensive list of literatures, the reader is referred to Kato $\lceil 10 \rceil$.