# Remarks on codimension one foliations of spheres 

By Tadayoshi Mizutani

(Received Feb. 19, 1972)

## § 1. Introduction.

In [1], B. Lawson constructed codimension one foliations of $S^{2^{k}+3}, k=1$, ' $2, \cdots$. Recently, I. Tamura succeeded in proving that every odd dimensional homotopy sphere has a codimension one foliation [2]. In both cases, it was important that $S^{5}$ has a codimension one foliation. In this article, we shall show that Lawson's examples are obtained by a reduction theorem of $S^{1}$. bundles and that there exist other examples of foliations of $S^{5}$. These examples of $S^{5}$ are $S^{1}$-invariant, especially, $Z_{k}$-invariant for any positive integer $k$. Thus, we obtain also new types of foliations of five dimensional lens spaces.

All foliations considered are differentiable codimension one foliations unless otherwise stated.
§ 2. Fibrations over a circle.
Let $\eta$ be the standard $S^{1}$-principal bundle over $\boldsymbol{C} P^{n}$ with total space $S^{2 n+1}$ and projection map $\eta$ defined by $\eta\left(z_{0}, \cdots, z_{n}\right)=\left[z_{0}, \cdots, z_{n}\right]$, where $S^{2 n+1}=\left\{\left(z_{0}\right.\right.$, $\left.\left.\cdots, z_{n}\right) \in C^{n+1} ;\left|z_{0}\right|^{2}+\cdots+\left|z_{n}\right|^{2}=1\right\}$ and $\left[z_{0}, \cdots, z_{n}\right]$ denotes the homogeneous coordinate.

Proposition 1. Let d be a positive integer and let $M^{2 n-2}$ be a (2n-2)dimensional connected closed differentiable submanifold of $\boldsymbol{C P} P^{n}$ such that the fundamental class of $M^{2 n-2}$ represents d-times the generator of $H_{2 n-2}\left(\boldsymbol{C} P^{n}, Z\right)$ $\cong Z$. Let $\nu(M)$ denote the closed tubular neighbourhood of $M^{2 n-2}$ in $\boldsymbol{C P} P^{n}$. Then $\eta$ restricted to $W^{2 n}=\boldsymbol{C} P^{n}$-int $\nu(M)$ has a $Z_{d}$-reduction.

Proof. Let $\alpha$ be the canonical generator of $H^{2}\left(\boldsymbol{C} P^{n}, Z\right)$ and let $i$ be the inclusion map $W^{2 n} \rightarrow \boldsymbol{C} P^{n}$. To prove the proposition, it is sufficient to show that $d \cdot\left(i^{*}(\alpha)\right)=0$ in $H^{2}\left(W^{2 n}, Z\right)$. This follows from the following observation.

Consider the exact sequence of groups; $Z_{d} \rightarrow S^{1} \rightarrow S^{1}$, here the first map is a natural injection and the second map is multiplication by $d$. Passing to classifying spaces of bundles, we have a fibration; $B Z_{d} \rightarrow B S^{1} \rightarrow B S^{1}$, or $K\left(Z_{d}, 1\right) \rightarrow K(Z, 2) \rightarrow K(Z, 2)$. Hence, for a $C W$-complex $X$, we have an exact

