Smooth S^1 -action and bordism

By Akio HATTORI and Hajime TANIGUCHI

(Received Feb. 14, 1972)

§1. Introduction.

In this paper we study smooth actions of the circle group S^1 on smooth manifolds from the view point of bordism theory.

Let G be a fixed compact Lie group and \mathcal{F}' and \mathcal{F} be families of subgroups of G such that $\mathcal{F}' \subset \mathcal{F}$. We assume that both families are closed under inner automorphisms of G. An action of G on a manifold M will be called $(\mathcal{F}, \mathcal{F}')$ -free provided that it is effective on each component of M and the isotropy subgroup G_x at each point $x \in M$ belongs to \mathcal{F} and, if $x \in \partial M$, G_x belongs to \mathcal{F}' . When $\mathcal{F}' = \emptyset$ then necessarily $\partial M = \emptyset$. In this case we call the action \mathcal{F} -free. The *n*-dimensional bordism group $\Omega_n(G; \mathcal{F}, \mathcal{F}')$ of all orientation preserving $(\mathcal{F}, \mathcal{F}')$ -free smooth G-actions on compact oriented smooth *n*-manifolds is defined in the obvious way. See $[3]^{10}$. If $\mathcal{F}' = \emptyset$ then we denote $\Omega_n(G; \mathcal{F}, \emptyset)$ simply by $\Omega_n(G; \mathcal{F})$. These groups are connected by an exact sequence

$$\cdots \longrightarrow \mathcal{Q}_n(G; \mathcal{F}') \xrightarrow{i_*} \mathcal{Q}_n(G; \mathcal{F}) \xrightarrow{j_*} \mathcal{Q}_n(G; \mathcal{F}, \mathcal{F}') \xrightarrow{\partial_*} \mathcal{Q}_{n-1}(G; \mathcal{F}') \longrightarrow \cdots.$$

In an entirely similar way the U-bordism group $\Omega_n^U(G; \mathcal{F}, \mathcal{F}')$ of all Ustructure preserving $(\mathcal{F}, \mathcal{F}')$ -free smooth G-actions on compact *n*-dimensional U-manifolds (weakly complex manifolds) are defined together with natural homomorphisms induced by the inclusion $\mathcal{F}' \subset \mathcal{F}$.

In this paper we consider the case in which $G = S^1$ and $\mathcal{F} = \mathcal{F}_i^+$ where we set

$$\mathcal{F}_l = \{ \boldsymbol{Z}_k | k \leq l \}$$

and

$$\mathcal{F}_l^+ = \mathcal{F}_l \cup \{S^1\}$$
.

Here Z_k denotes the subgroup of S^1 consisting of k-th roots of unity. Thus $\mathscr{F}_{\infty} = \bigcup \mathscr{F}_l$ is the set of all finite subgroups of S^1 and $\mathscr{F}_{\infty}^+ = \bigcup \mathscr{F}_l^+$ is the set of all closed subgroups of S^1 .

Our main results are the following.

¹⁾ In [3] the assumption of effectiveness in the definition of $(\mathcal{F}, \mathcal{F}')$ -free action was not imposed. We add that assumption to simplify the resulting bordism group.