Approximation of nonlinear semigroups and evolution equations

By Jerome A. Goldstein

(Received Sept. 23, 1971)

§ 1. Introduction.

Consider a sequence of abstract Cauchy problems

$$
\begin{equation*}
(d / d t) u_{n}(t) \in A_{n}(t) u_{n}(t) \quad(t \geqq 0), u_{n}(0)=x_{n}, n=0,1,2, \cdots \tag{1.1}
\end{equation*}
$$

in an arbitrary Banach space X. Here $A_{n}(t)$ is for each t a multi-valued function defined on a subset of X. We shall show that under suitable hypotheses, if x_{n} converges to x_{0} and if $A_{n}(t)$ converges to $A_{0}(t)$ (in a sense to be made precise below), then $u_{n}(t)$ converges to $u_{0}(t)$.

We first deal with the case when the multi-valued function A_{n} does not depend on t and determines a strongly continuous semigroup of Lipschitzian operators on a subset of X. In Section 3, using a generation theorem of Crandall and Liggett [4], we obtain nonlinear generalizations of the Trotter-Neveu-Kato approximation theorem for semigroups. These extend results of a number of authors, including Brezis and Pazy [2], Mermin [14], Miyadera [15], and Miyadera and Ôharu [17]. Moreover, our result is best possible in the sense that our sufficient condition is necessary in the linear case.

In Section 4 we establish existence and uniqueness criteria for a special class of time dependent multi-valued Cauchy problems of the form

$$
\begin{equation*}
(d / d t) u(t) \in A(t) u(t) \quad(t \geqq 0), \quad u(0)=x \tag{1.2}
\end{equation*}
$$

in a Hilbert space. We also prove an approximation theorem in this situation.
Finally, using existence theorems of Crandall and Liggett [4] and Martin [12], we establish in Section 5 approximation theorems for a class of problems of the form (1.1) in an arbitrary Banach space setting.

§ 2. Notation.

Let X be a Banach space with norm $\|\cdot\|$. When X is a Hilbert space, its inner product will be denoted by $\langle\cdot, \cdot\rangle$. "lim" [resp. " w-lim"] refers to limit in the norm [resp. weak] topology of $X . \mathscr{P}(X)$ denotes the set of all subsets of X, \boldsymbol{R} denotes the real numbers, \boldsymbol{R}^{+}the nonnegative reals, \boldsymbol{Z}^{+}the non-

