On the K-theoretic characteristic numbers of weakly almost complex manifolds with involution

By Tomoyoshi YOSHIDA

(Received April 21, 1971) (Revised May 25, 1972)

§0. Introduction.

In [7], tom Dieck has defined the equivariant unitary cobordism ring U_G for any compact Lie group G. U_G -theory seems to be a strong tool in the theory of the differentiable transformation group.

We are concerned only with the case of $G = Z_2$, the cyclic group of order 2, and throughout in this paper, the letter G stands for Z_2 . Let $\mathcal{O}_*^{\mathcal{Y}}(G)$ be the bordism ring of U-manifolds with involution. T. tom Dieck has shown that elements of $\mathcal{O}_*^{\mathcal{Y}}(G)$ are detected by G-equivariant characteristic numbers. More precisely we construct a ring homomorphism

 $\Phi: U_G^* \longrightarrow \text{Inv. Lim. } R(G)[[t_1, \cdots, t_s]]$

and its localization

 $\Phi_L: U_G^* \longrightarrow \text{Inv. Lim. } Q[[t_1, \cdots, t_s]].$

Then the restriction of Φ on U_G^n is injective. We shall recapitulate this fact in (1.1) for the sake of completeness, and we give the explicit form of Φ_L in (3.1) and its relation to Φ in (3.2).

As corollaries of (1.1) and (3.2), the following results will be proved in §4. THEOREM (0.1). Let $[M, T] \in \mathcal{O}^{v}_{*}(G)$. The normal bundle ν_{F} of a connected

component of the fixed point set F in M naturally has a complex structure. Assume the following two conditions:

(i) For each connected component F, ν_F is trivial,

(ii) $\dim_C \nu_F$ is independent of F and equals a constant n.

Then $\Sigma[F] \in 2^n U$ and there are two elements of U_* , [N] and [L] such that

$$[M, T] = [CP(1), \tau]^n [N] + [G, \sigma][L] \quad in \ \mathcal{O}^{\mathcal{Y}}_{\ast}(G)$$

where $[CP(1), \tau] \in \mathcal{O}_*^{\mathbb{V}}(G)$ is the class of CP(1) with the involution $[z_1, z_2] \rightarrow [z_1, -z_2]$ and $[G, \sigma] \in \mathcal{O}_*^{\mathbb{V}}(G)$ is the class of G with the natural involution $1 \rightarrow -1$.

THEOREM (0.2). Let $[M, T] \in \mathcal{O}^{\mathcal{Y}}_{*}(G)$. If M is a Kähler manifold, and T