A characterization of $\operatorname{PSL}(2,11)$ and S_{5}

By Hiroshi Kimura

(Received March 10, 1971)
(Revised Nov. 6, 19.71)

§ 1. Introduction.

The symmetric group S_{5} of degree five and the two dimensional projective special linear group $\operatorname{PSL}(2,11)$ over the field of eleven elements are doubly transitive permutation groups of degree five and eleven, respectively, in which the stabilizer of two points is isomorphic to the symmetric group S_{3} of degree three.

Let Ω be the set of points $1,2, \cdots, n$, where n is odd. Let \mathbb{C} be a doubly transitive permutation group in which the stabilizer $\mathbb{E}_{1,2}$ of the points 1 and 2 has even order and a Sylow 2 -subgroup \mathbb{R} of $\mathscr{G}_{1,2}$ is cyclic. In the case $\mathscr{F}_{1,2}$ is cyclic, Kantor-O'Nan-Seitz and the author proved independently that \mathbb{E} contains a regular normal subgroup ([5] and [8]). In this paper we shall study the case $\mathscr{G}_{1,2}$ is not cyclic. Let τ be the unique involution in Ω. By a theorem of Witt ([10, Th. 9.4]) the centralizer $C_{\mathbb{S}}(\tau)$ of τ in \mathfrak{G} acts doubly transitively on the set $\mathfrak{J}(\tau)$ consisting of points in Ω fixed by τ.

The purpose of this paper is to prove the following theorem.
THEOREM. Let $\mathfrak{E}, \mathfrak{E}_{1,2}, \tau$ and $\mathfrak{J}(\tau)$ be as above. Assume that all Sylow subgroups of $\mathbb{E}_{1,2}$ are cyclic, the image of the doubly transitive permutation representation of $C_{\mathbb{\Theta}}(\tau)$ on $\Im(\tau)$ contains a regular normal subgroup and that © does not contain a regular normal subgroup. If \mathbb{E} has two classes of involutions, then \mathbb{E} is isomorphic to S_{5} and $n=5$. If \mathscr{G} has one class of involutions and τ is not contained in the center of $\mathscr{E}_{1,2}$, then \mathfrak{G} is isomorphic to $\operatorname{PSL}(2,11)$ and $n=11$.

In [7] we proved this theorem in the case that the order $\mathscr{G}_{1,2}$ equals $2 p$ for an odd prime number p.

Let \mathfrak{X} be a subset of a permutation group. Let $\mathfrak{J}(\mathfrak{X})$ denote the set of all the fixed points of \mathfrak{X} and let $\alpha(\mathfrak{X})$ be the number of points in $\mathfrak{J}(\mathfrak{X})$. The other notion is standard.

§ 2. On the degree of \mathbb{E}.

Let \mathscr{F}_{5} be a doubly transitive permutation group on $\Omega=\{1,2, \cdots, n\}$. Let \mathscr{G}_{1} and $\mathscr{E}_{1,2}$ be the stabilizers of the point 1 and the points 1 and 2 ,

