A topological invariant of substitution minimal sets

By Teturo KAMAE

(Received June 17, 1971) (Revised Jan. 21, 1972)

§0. Introduction.

In this paper, we examine the ergodic properties of a bisequence over some finite set of symbols which is generated by a *substitution*. By a substitution, we mean a mapping which maps each symbol to a sequence of some common length (≥ 2) of the symbols. For example, consider a substitution $\theta: 0 \rightarrow 0 1, 1 \rightarrow 1 0$ which is defined on $\{0, 1\}$. Define substitutions $\theta^2, \theta^3, \cdots$, as follows:

$$\begin{aligned} \theta^2(0) &= \theta(0 \ 1) = \theta(0)\theta(1) = 0 \ 1 \ 1 \ 0 \ , \\ \theta^2(1) &= \theta(1 \ 0) = \theta(1)\theta(0) = 1 \ 0 \ 0 \ 1 \ , \\ \theta^3(0) &= \theta(0 \ 1 \ 1 \ 0) = \theta(0)\theta(1)\theta(1)\theta(0) \\ &= 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ , \\ \vdots \end{aligned}$$

A bisequence $\alpha = \cdots 01101001 * 01101001 \cdots$ which is known as the Morse sequence is defined as the limit of extensions:

 $1 * 0 < \theta^{2}(1 * 0) \equiv \theta^{2}(1) * \theta^{2}(0) = 1 \ 0 \ 0 \ 1 * 0 \ 1 \ 1 \ 0$ $< \theta^{4}(1 * 0) < \theta^{6}(1 * 0) < \cdots,$

where "*" denotes the "center" of bisequences. In this case, it holds that $\theta^2(\alpha) = \alpha$. Generally speaking, given any substitution θ over some finite set D, a bisequence α over D is said to be generated by θ if $\theta^k(\alpha) = \alpha$ for some integer $k \ge 1$. It is known ([3]) that for any substitution θ , there exists at least one almost periodic sequence generated by θ . Moreover, it can be proved (from Lemma 1~3) that if θ satisfies Condition # defined in Section 1, all almost periodic sequences generated by θ belong to a common minimal set of the shift dynamical system over D. Such a minimal set S as above is unique and characterized as a minimal set S for which $\theta(S) \subset S$ holds. In this case, denote $S = W(\theta)$. Let Θ be a set of all substitutions defined on $\{0, 1, \dots, r-1\}$ for some integer $r \ge 1$ which satisfy Condition #. We introduce a computable (in the sense of the recursive function theory) function B called