A topological invariant of substitution minimal sets

By Teturo Kamae

(Received June 17, 1971)
(Revised Jan. 21, 1972)

§ 0. Introduction.

In this paper, we examine the ergodic properties of a bisequence over some finite set of symbols which is generated by a substitution. By a substitution, we mean a mapping which maps each symbol to a sequence of some common length ($\geqq 2$) of the symbols. For example, consider a substitution $\theta: 0 \rightarrow 01,1 \rightarrow 10$ which is defined on $\{0,1\}$. Define substitutions $\theta^{2}, \theta^{3}, \cdots$, as follows:

$$
\begin{aligned}
\theta^{2}(0) & =\theta(01)=\theta(0) \theta(1)=0110, \\
\theta^{2}(1) & =\theta(10)=\theta(1) \theta(0)=1001, \\
\theta^{3}(0) & =\theta(0110)=\theta(0) \theta(1) \theta(1) \theta(0) \\
& =01101001, \\
& \vdots
\end{aligned}
$$

A bisequence $\alpha=\cdots 01101001 * 01101001 \cdots$ which is known as the Morse sequence is defined as the limit of extensions:

$$
\begin{aligned}
1 * 0 & <\theta^{2}(1 * 0) \equiv \theta^{2}(1) * \theta^{2}(0)=1001 * 0110 \\
& <\theta^{4}(1 * 0)
\end{aligned}<\theta^{6}(1 * 0) \prec \cdots,
$$

where "*" denotes the " center" of bisequences. In this case, it holds that $\theta^{2}(\alpha)=\alpha$. Generally speaking, given any substitution θ over some finite set D, a bisequence α over D is said to be generated by θ if $\theta^{k}(\alpha)=\alpha$ for some integer $k \geqq 1$. It is known ([3]) that for any substitution θ, there exists at least one almost periodic sequence generated by θ. Moreover, it can be proved (from Lemma $1 \sim 3$) that if θ satisfies Condition \# defined in Section 1, all almost periodic sequences generated by θ belong to a common minimal set of the shift dynamical system over D. Such a minimal set S as above is unique and characterized as a minimal set S for which $\theta(S) \subset S$ holds. In this case, denote $S=W(\theta)$. Let Θ be a set of all substitutions defined on $\{0,1, \cdots, r-1\}$ for some integer $r \geqq 1$ which satisfy Condition \#. We introduce a computable (in the sense of the recursive function theory) function B called

