On transcendency of special values of arithmetic automorphic functions

By Yasuo MORITA*

(Received Sept. 28, 1971)

§1. Introduction.

Let Γ be the modular group $SL(2, \mathbb{Z})$ and $\tilde{\Gamma} = GL^+(2, \mathbb{Q})$. Let H be the complex upper half plane $\{z \in \mathbb{C}; \text{ Im } z > 0\}$. We define the action of an element $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of $GL^+(2, \mathbb{R})$ on H by

$$z \longmapsto \frac{az+b}{cz+d}$$

for $z \in H$. Then Γ and $\tilde{\Gamma}$ operate on H. Let J(z) be the standard modular function of level one. Then the classical theory of complex multiplication shows:

THEOREM C. If $z \in H$ is fixed by some non-scalar element of $\tilde{\Gamma}$, z is an algebraic number and J(z) generates an abelian extension of Q(z).

On the other hand, T. Schneider obtained the following theorem:

THEOREM T. Let $z \in H$ be an algebraic number. Suppose that z is not fixed by any non-scalar element of Γ . Then J(z) is a transcendental number.

In this paper, we shall give a generalization of Theorem T.

Let *B* be an indefinite quaternion algebra over the rational number field Q, \mathcal{O} a maximal order of *B*, Γ the group of all the units of \mathcal{O} of reduced norm one, and $\tilde{\Gamma}$ the group of all the invertible elements of *B* with positive reduced norm. Now we fix an irreducible representation χ of *B* into $M_2(\mathbb{R})$ so that the image $\chi(B)$ is contained in $M_2(\overline{Q})$, where \overline{Q} is the algebraic closure of Q in *C*. Then we may regard Γ and $\tilde{\Gamma}$ as subgroups of $GL^+(2, \mathbb{R})$ acting on *H*. As a generalization of the function *J*, *G*. Shimura has constructed a holomorphic map φ from *H* into a projective space \mathbb{P}^l , satisfying the following conditions (cf. Shimura [4], § 9): (i) φ induces a biregular isomorphism from $\Gamma \setminus H$ onto an algebraic curve in \mathbb{P}^l ; (ii) if *z* is fixed by some non-scalar element of $\tilde{\Gamma}$, $\varphi(z)$ generates an abelian extension over a certain imaginary quadratic field. We shall call the map φ the *Shimura map*.

Now our main result can be stated as follows:

^{*} This paper was partially supported by Sakkokai Foundation.