On transcendency of special values of arithmetic automorphic functions

By Yasuo Morita*

(Received Sept. 28, 1971)

§ 1. Introduction.

Let Γ be the modular group $S L(2, \boldsymbol{Z})$ and $\tilde{\Gamma}=G L^{+}(2, \boldsymbol{Q})$. Let H be the complex upper half plane $\{z \in C ; \operatorname{Im} z>0\}$. We define the action of an element $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of $G L^{+}(2, \boldsymbol{R})$ on H by

$$
z \longmapsto \frac{a z+b}{c z+d}
$$

for $z \in H$. Then Γ and $\tilde{\Gamma}$ operate on H. Let $J(z)$ be the standard modular function of level one. Then the classical theory of complex multiplication shows:

Theorem C. If $z \in H$ is fixed by some non-scalar element of $\tilde{\Gamma}, z$ is an algebraic number and $J(z)$ generates an abelian extension of $\boldsymbol{Q}(z)$.

On the other hand, T. Schneider obtained the following theorem:
THEOREM T. Let $z \in H$ be an algebraic number. Suppose that z is not fixed by any non-scalar element of Γ. Then $J(z)$ is a transcendental number.

In this paper, we shall give a generalization of Theorem T.
Let B be an indefinite quaternion algebra over the rational number field $\boldsymbol{Q}, \mathcal{O}$ a maximal order of B, Γ the group of all the units of \mathcal{O} of reduced norm one, and $\tilde{\Gamma}$ the group of all the invertible elements of B with positive reduced norm. Now we fix an irreducible representation χ of B into $M_{2}(\boldsymbol{R})$ so that the image $\chi(B)$ is contained in $M_{2}(\overline{\boldsymbol{Q}})$, where $\overline{\boldsymbol{Q}}$ is the algebraic closure of \boldsymbol{Q} in \boldsymbol{C}. Then we may regard Γ and $\tilde{\Gamma}$ as subgroups of $G L^{+}(2, \boldsymbol{R})$ acting on H. As a generalization of the function J, G. Shimura has constructed a holomorphic map φ from H into a projective space P^{l}, satisfying the following conditions (cf. Shimura [4], §9): (i) φ induces a biregular isomorphism from $\Gamma \backslash H$ onto an algebraic curve in \boldsymbol{P}^{l}; (ii) if z is fixed by some non-scalar element of $\tilde{\Gamma}, \varphi(z)$ generates an abelian extension over a certain imaginary quadratic field. We shall call the map φ the Shimura map.

Now our main result can be stated as follows:

[^0]
[^0]: * This paper was partially supported by Sakkokai Foundation.

