# On rank 3 groups with a multiply transitive constituent 

By Eiichi BANNAI*)

(Received Sept. 1, 1971)

## § 1. Introduction.

We say that a permutation group $(\mathscr{C}, \Omega)$ is a primitive extension of rank 3 of a permutation group ( $G, \Delta$ ) if the following conditions are satisfied: (i) (B) is primitive and of rank 3 on the set $\Omega$, and (ii) there exists an orbit $\Delta(a)$ of the stabilizer $\mathbb{Q}_{a}(a \in \Omega)$ such that the action of $\mathbb{E}_{a}$ on $\Delta(a)$ is faithful and that $\left(\mathbb{S}_{a}, \Delta(a)\right)$ and ( $G, \Delta$ ) are isomorphic as permutation groups.

The purpose of this note is to prove the following theorem:
Theorem 1. Let $(G, \Delta)$ be a 4-ply transitive permutation group. If ( $G, \Delta$ ) has a primitive extension of rank 3, then one of the following cases holds:
(I) $|\Delta|=5, G=S_{5}$,
(II) $|\Delta|=7, G=S_{7}$ or $A_{7}$,
(III) ${ }^{1)}|\Delta|=57$ and $G \neq S_{57}, A_{57}$,
where $S_{n}$ and $A_{n}$ denote the symmetric and alternating groups on $\Delta(|\Delta|=n)$ respectively.

Theorem 1 is regarded as a sort of generalization of the results in T . Tsuzuku [6] and S. Iwasaki [3] where primitive extensions of rank 3 of symmetric and alternating groups are determined.

The author wishes to express his hearty thanks to Professor Ryuzaburo Noda for his kind criticisms, which have improved Theorem 1 to this general form. ${ }^{2)}$ The author also thanks Mr. Hikoe Enomoto for the valuable discussions we had.

## § 2. Proof of Theorem 1.

Lemma 1. Let $\mathbb{E}$ be a primitive rank 3 permutation group on $\Omega$, and let $\mathbb{S}_{a}$ be doubly transitive on one of its orbits $\Delta(a)$. Let $\Gamma(a)$ be another orbit

[^0]
[^0]:    *) Supported in part by the Fujukai Foundation.

    1) Professor Noboru Ito has kindly shown the author the proof of the non-existence of non-trivial 4 -ply transitive permutation group of degree 57 in a letter dated on Aug. 18, 1971. Therefore the case (III) of Theorem 1 does not occur.
    2) In the original manuscript Theorem 1 is proved with the additional hypothesis that the case (B) in the proof of Theorem 1 holds.
