On rank 3 groups with a multiply transitive constituent

By Eiichi BANNAI*)

(Received Sept. 1, 1971)

§1. Introduction.

We say that a permutation group (\mathfrak{G}, Ω) is a primitive extension of rank 3 of a permutation group (G, Δ) if the following conditions are satisfied: (i) \mathfrak{G} is primitive and of rank 3 on the set Ω , and (ii) there exists an orbit $\Delta(a)$ of the stabilizer \mathfrak{G}_a $(a \in \Omega)$ such that the action of \mathfrak{G}_a on $\Delta(a)$ is faithful and that $(\mathfrak{G}_a, \Delta(a))$ and (G, Δ) are isomorphic as permutation groups.

The purpose of this note is to prove the following theorem:

THEOREM 1. Let (G, Δ) be a 4-ply transitive permutation group. If (G, Δ) has a primitive extension of rank 3, then one of the following cases holds:

(I) $|\Delta| = 5, G = S_5,$

(II) $|\Delta| = 7, G = S_7 \text{ or } A_7$,

(III)¹⁾ $|\Delta| = 57$ and $G \neq S_{57}$, A_{57} ,

where S_n and A_n denote the symmetric and alternating groups on Δ ($|\Delta| = n$) respectively.

Theorem 1 is regarded as a sort of generalization of the results in T. Tsuzuku [6] and S. Iwasaki [3] where primitive extensions of rank 3 of symmetric and alternating groups are determined.

The author wishes to express his hearty thanks to Professor Ryuzaburo Noda for his kind criticisms, which have improved Theorem 1 to this general form.²⁾ The author also thanks Mr. Hikoe Enomoto for the valuable discussions we had.

§2. Proof of Theorem 1.

LEMMA 1. Let \mathfrak{G} be a primitive rank 3 permutation group on Ω , and let \mathfrak{G}_a be doubly transitive on one of its orbits $\Delta(a)$. Let $\Gamma(a)$ be another orbit

^{*)} Supported in part by the Fujukai Foundation.

¹⁾ Professor Noboru Ito has kindly shown the author the proof of the non-existence of non-trivial 4-ply transitive permutation group of degree 57 in a letter dated on Aug. 18, 1971. Therefore the case (III) of Theorem 1 does not occur.

²⁾ In the original manuscript Theorem 1 is proved with the additional hypothesis that the case (B) in the proof of Theorem 1 holds.