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\S 0. Introduction.

In this paper we will be primarily concerned with the most general
processes with stationary independent increments on the real line $R$ . All the
results are valid for the higher dimensional such processes without change.
It is only for saving the notation that we restrict ourselves to the one-
dimensional processes.

We will summarize the contents of the paper with the main results being
picked up in (A) to (D).

\S 1 through \S 3 are of quite analytic character. Let $(\mu_{t})_{t\geqq 0}$ be a convolution
semi-group of probability measures on $R$ . Let $(P_{t})_{\iota\geqq 0}$ be the semi-group of

Markov kernels defined by $P_{t}f=\int f(x+y)\mu_{t}(dy)$ and $(U_{\lambda})_{\lambda>0}$ , the resolvent of
$(P_{t})$ . $C_{0}$ stands for the space of continuous functions vanishing at infinity and
$(\mathcal{D}_{Lp}^{\prime}),$ $ 1\leqq p\leqq\infty$ , the spaces of distributions introduced by L. Schwartz [10;
Chap. VI, \S 8]. It has been known that, for every $f\in C_{0}^{2}=\{f\in C_{0} ; f^{\prime}, f^{\prime\prime}\in C_{0}\}$ ,
the uniform limit of $t^{-1}[P_{t}f-f]$ as $t\rightarrow 0$ is given by

(0.1) A $f(x):=af^{\prime}(x)+\frac{\sigma^{2}}{2}f^{\prime\prime}(x)+\int_{R\backslash \{0\}}[f(x+y)-f(x)-\frac{y}{1+y^{2}}f^{\prime}(x)]\nu(dy)$ ,

where $a\in R,$ $\sigma^{2}\geqq 0$ and $\nu$ is the so-called L\’evy measure. L. Schwartz’s basic
results on the spaces $(\mathcal{D}_{Lp}^{\prime})$ make it possible to extend the operators $P_{t},$ $U_{\lambda}$

and $A$ to those on the space of “ bounded distributions ”
$(\mathcal{D}_{L^{\infty}}^{\prime})$ . Hence, for

example, if $f$ is a bounded function, $Af$ is well-defined and belongs to $(\mathcal{D}_{L^{\infty}}^{\prime})$ .
We see that $Af$ is of the form $\tilde{A}^{0}*f$ by means of an element $\tilde{A}^{0}\in(\mathcal{D}_{L^{1}}^{\prime})$ ,
where $‘‘*$ “ means the convolution. It should be noted that C. S. Herz [5]
called this distribution $\tilde{A}^{0}$ a generalized Laplacian and studied its structure in
a little different context from ours.

The following theorem is fundamental throughout the paper and it is
proved in \S 2.

(A) For every $\lambda>0$ and $f\in(\mathcal{D}_{L^{\infty}}^{\prime}),$ $u=U_{\lambda}f$ is the unique solution in $(\mathcal{D}_{L^{\infty}}^{\prime})$


