A formula on some odd-dimensional Riemannian manifolds related to the Gauss-Bonnet formula

By Shûkichi TANNo:

(Received Aug. 20, 1971)

§ 1. Introduction.

Let ($N^{2 n}, g$) be a compact orientable Riemannian manifold of $2 n$-dimension. The generalised Gauss-Bonnet formula is

$$
\begin{equation*}
\frac{(-1)^{n}}{2^{2 n} \pi^{n} n!} \int_{N} \sum \varepsilon_{i_{1} \cdots i_{2 n}} \Omega_{i_{1 i} i_{2}}^{\prime} \wedge \cdots \wedge \Omega_{i_{2 n-1 i_{2 n}}^{\prime}}^{\prime}=\chi(N), \tag{1.1}
\end{equation*}
$$

where $\Omega_{i j}^{\prime}$ denote the curvature forms and $\chi(N)$ is the Euler-Poincaré characteristic. The left hand side of (1.1) is a differential geometric or Riemannian geometric quantity and the right hand side is a topological quantity. In (1.1), even dimensionality is essential.

For a compact orientable Riemannian manifold ($M^{2 n+1}, g$) of odd dimension, we have $\chi(M)=0$. This shows that $M=M^{2 n+1}$ admits a vector field ξ with no singular points. If we try to find some formula on ($M^{2 n+1}, g$) analogous to (1.1), some restriction on this ξ may be necessary and it might be hoped that the right hand side is a linear combination of Betti numbers.

We assume that $\xi=e_{0}$ is a unit vector field. Let w_{0} be the 1 -form dual to e_{0} with respect to g. Then we have local fields of orthonormal vectors $e_{0}, e_{1}, \cdots, e_{2 n}$ and the dual $w_{0}, w_{1}, \cdots, w_{2 n}$. We call this frame field a ξ-frame field. By $\Omega_{A B}(A, B=0,1, \cdots, 2 n)$ we denote the curvature forms with respect to the above frame field. By $\beta_{r}(M)$ we denote the r-th Betti number of M. In this paper we have

Theorem A. Let $\left(M^{2 n+1}, g\right)$ be a compact Riemannian manifold admitting a unit Killing vector ξ and let $\left(e_{0}, e_{i}\right)$ be a ξ-frame field. Assume that

$$
\begin{equation*}
\Omega_{0 i}=w_{i} \wedge w_{0}, \quad i=1, \cdots, 2 n \tag{1.2}
\end{equation*}
$$

and that each trajectory of ξ is of constant length $l(\xi)$. Then

$$
\begin{equation*}
\frac{(-1)^{n}}{l(\xi) 2^{2 n} \pi^{n} n!} \int_{M} F\left(\Omega_{i j}, w_{0}\right)=\sum_{r=0}^{n}(n+1-r)(-1)^{r} \beta_{r}(M), \tag{1.3}
\end{equation*}
$$

where, putting $d w_{0}=\Sigma \varphi_{A B} w_{A} \wedge w_{B}$,
*) The author is partially supported by the Matsunaga Foundation.

