Structure of rings satisfying certain polynomial identities

By Mohan S. PUTCHA and Adil YAQUB

(Received May 4, 1971)

A well-known theorem of Jacobson [2] asserts that if R is an associative ring with the property that, for all x in R, there exists an integer m(x) > 1such that $x^{m(x)} = x$, then R is isomorphic to a subdirect sum of fields. Our present object is to extend Jacobson's Theorem by determining the structure of a certain class of associative rings satisfying polynomial identities involving n elements x_1, \dots, x_n of R. In order to be able to state this generalization, we first define a word $w(x_1, \dots, x_n)$ in x_1, \dots, x_n to be a product in which each factor is x_i for some $i=1, \dots, n$. A polynomial $f(x_1, \dots, x_n)$ is, then, an expression of the form $c_1w_1(x_1, \dots, x_n) + \dots + c_mw_m(x_1, \dots, x_n)$, where the c_i are integers. The degree of x_i in the word $w(x_1, \dots, x_n)$ is the number of times x_i appears as a factor in $w(x_1, \dots, x_n)$. Suppose that $f(x_1, \dots, x_n) = c_1w_1(x_1, \dots, x_n) + \dots + c_mw_m(x_1, \dots, x_n) = c_1w_1(x_1, \dots, x_n) + \dots + c_mw_m(x_1, \dots, x_n)$ is the smallest value among the following: degree of x_i in $w_1(x_1, \dots, x_n)$. The following theorem is proved:

THEOREM 1. Suppose R is an associative ring and n is a fixed positive integer. Suppose that for all elements x_1, \dots, x_n of R, there exists a polynomial $f = f_{x_1,\dots,x_n}(x_1, \dots, x_n)$, depending on x_1, \dots, x_n , such that degree of each x_i in $f \ge 2$, and suppose

$$x_1 \cdots x_n = f_{x_1, \cdots, x_n}(x_1, \cdots, x_n).$$

Then R is isomorphic to a subdirect sum of fields and a nilpotent ring S satisfying $S^n = (0)$.

Observe that Theorem 1 generalizes Jacobson's Theorem quoted above (take n=1 and $f_{x_1}(x_1) = x_1^{m(x_1)}$).

In preparation for the proof of Theorem 1, we proceed to establish the following lemmas. But, first, we make the assumption that n > 1 throughout, since Theorem 1 is true for n=1 (see proof of Lemma 3).

LEMMA 1. Suppose S is an associative subdirectly irreducible ring which does not have an identity. Suppose, moreover, that for all x_1, \dots, x_n in S, there exists a polynomial $f = f_{x_1,\dots,x_n}(x_1, \dots, x_n)$, depending on x_1, \dots, x_n such that

(1)
$$x_1 \cdots x_n = f_{x_1, \dots, x_n}(x_1, \dots, x_n); \text{ degree of each } x_i \text{ in } f \geq 2.$$