Structure of rings satisfying certain polynomial identities

By Mohan S. Putcha and"Adil Yaqub

(Received May 4, 1971)

A well-known theorem of Jacobson [2] asserts that if R is an associative ring with the property that, for all x in R, there exists an integer $m(x)>1$ such that $x^{m(x)}=x$, then R is isomorphic to a subdirect sum of fields. Our present object is to extend Jacobson's Theorem by determining the structure of a certain class of associative rings satisfying polynomial identities involving n elements x_{1}, \cdots, x_{n} of R. In order to be able to state this generalization, we first define a word $w\left(x_{1}, \cdots, x_{n}\right)$ in x_{1}, \cdots, x_{n} to be a product in which each factor is x_{i} for some $i=1, \cdots, n$. A polynomial $f\left(x_{1}, \cdots, x_{n}\right)$ is, then, an expression of the form $c_{1} w_{1}\left(x_{1}, \cdots, x_{n}\right)+\cdots+c_{m} w_{m}\left(x_{1}, \cdots, x_{n}\right)$, where the c_{i} are integers. The degree of x_{i} in the word $w\left(x_{1}, \cdots, x_{n}\right)$ is the number of times x_{i} appears as a factor in $w\left(x_{1}, \cdots, x_{n}\right)$. Suppose that $f\left(x_{1}, \cdots, x_{n}\right)=c_{1} w_{1}\left(x_{1}, \cdots\right.$, $\left.x_{n}\right)+\cdots+c_{m} w_{m}\left(x_{1}, \cdots, x_{n}\right)$ is a polynomial in x_{1}, \cdots, x_{n}. The degree of x_{i} in $f\left(x_{1}, \cdots, x_{n}\right)$ is the smallest value among the following: degree of x_{i} in $w_{1}\left(x_{1}\right.$, $\left.\cdots, x_{n}\right), \cdots$, degree of x_{i} in $w_{m}\left(x_{1}, \cdots, x_{n}\right)$. The following theorem is proved:

THEOREM 1. Suppose R is an associative ring and n is a fixed positive integer. Suppose that for all elements x_{1}, \cdots, x_{n} of R, there exists a polynomial $f=f_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right)$, depending on x_{1}, \cdots, x_{n}, such that degree of each x_{i} in f $\geqq 2$, and suppose

$$
x_{1} \cdots x_{n}=f_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right)
$$

Then R is isomorphic to a subdirect sum of fields and a nilpotent ring S satisfying $S^{n}=(0)$.

Observe that Theorem 1 generalizes Jacobson's Theorem quoted above (take $n=1$ and $\left.f_{x_{1}}\left(x_{1}\right)=x_{1}^{m\left(x_{1}\right)}\right)$.

In preparation for the proof of Theorem 1, we proceed to establish the following lemmas. But, first, we make the assumption that $n>1$ throughout, since Theorem 1 is true for $n=1$ (see proof of Lemma 3).

Lemma 1. Suppose S is an associative subdirectly irreducible ring which does not have an identity. Suppose, moreover, that for all x_{1}, \cdots, x_{n} in S, there exists a polynomial $f=f_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right)$, depending on x_{1}, \cdots, x_{n} such that

$$
\begin{equation*}
x_{1} \cdots x_{n}=f_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) ; \text { degree of each } x_{i} \text { in } f \geqq 2 . \tag{1}
\end{equation*}
$$

