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We begin by recalling several aspects of Herbrand’s theorem for $L_{\omega,\omega}$ , or
more precisely, of several corollaries to Herbrand’s original theorem $([31, [6]$ ,

[8], not in these references but elsewhere in the literature these corollaries
are sometimes confused with the theorem itself). $L^{\vee}$ is an extension of $L$

by arbitrarily many function symbols of each number of arguments.
(1) Semantic versions.
(a) Reduction, for validity, to existential sentences. For every sentence $\varphi$

of $L$ there is an existential sentence $\check{\varphi}$ of $L^{\vee}$ such that $\varphi$ is valid if and only

if $\check{\varphi}$ is valid.
(b) Weak Uniformity theorem. A prenex existential sentence $\theta=\exists x_{1}\cdots$

$x_{m}\psi(x_{1}, \cdots , x_{m})$ is valid if and only if it is valid in all canonical (term) models;

i. e., if and only if for each model $\mathfrak{A}$ of $\theta$ there are terms $t_{1}$ , $\cdot$ .. , $t_{m}$ such that
$\mathfrak{A}F\psi(t_{J}, \cdots t_{m})$ .

(b)i Uniformity theorem. $\theta$ is valid if and only if for some finite set $T$

of $terms_{t_{1}}\ldots.W_{{}^{t}m\in T}\psi(t_{1}, \cdots , t_{m})$ is valid.

A third aspect of Herbrand’s theorem will be considered in (2) (b) below.
There are many possible sentences $\check{\varphi}$ which can be used for a given $\varphi$

in (1)(a). In the case that $\varphi$ is in prenex form, the validity functional form
(often called the Herbrand normal form), which is dual to the Skolem form,
always suffices. For example, if $\varphi=\exists y\forall z\varphi_{1}(y, z)$ with $\varphi_{1}$ quantifier-free, the
validity functional form of $\varphi$ is

(i) $\exists y\varphi_{1}(y, f(y))$ .
Following Denton and Dreben [3], one can directly associate existential $\check{\varphi}$

with any $\varphi;\check{\varphi}$ is an Herbrand normal form of a prenex form of $\varphi$ .
To illustrate (1)(a) and (1) $(b)^{\prime}$ , consider the sentence
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