A remark on the character ring of a compact Lie group

By Masaru TAKEUCHI

(Received March 29, 1971)

Introduction

Let G be a compact topological group, $D(G)$ the set of equivalence classes of irreducible representations of G. (In this note the representation will mean always the continuous complex representation.) The character ring $R(G)$ of G is the free abelian group generated by $D(G)$ with the ring structure induced by the tensor product of representations. In the present note we provide a method of finding a system of generators of the character ring $R(G)$ of a compact (not necessarily connected) Lie group G, assuming that the quotient group G / G_{0} of G modulo the connected component G_{0} of G is a cyclic group (Theorem 5). Our problem reduces to finding generators of a certain commutative semi-group in the similar way as for a compact connected Lie group.

By applying the theorem we can know the structure of the character ring of the orthogonal group $O(2 l)$ of degree $2 l$ or of the double covering group Pin (2l) of $O(2 l)$. (See $\S 3$ for the definition of Pin (2l).) Let λ^{i} be the i-th exterior power of the standard representation of $O(2 l), \alpha$ the 1 -dimensional representation of $O(2 l)$ defined by $\alpha(x)=\operatorname{det} x$ for $x \in O(2 l)$. Let μ^{l} be the irreducible representation of $\operatorname{Pin}(2 l)$ such that its restriction to the connected component Spin (2l) of Pin (2l) splits into the direct sum of two half-spinor representations of Spin (2l) and $p: \operatorname{Pin}(2 l) \rightarrow O(2 l)$ denote the covering homomorphism. Then we have

$$
\begin{aligned}
& R(O(2 l))=\boldsymbol{Z}\left[\lambda^{1}, \lambda^{2}, \cdots, \lambda^{l}, \alpha\right] \text { with relations } \alpha^{2}=1 \text { and } \lambda^{l} \alpha=\lambda^{l}, \\
& R(\operatorname{Pin}(2 l))=\boldsymbol{Z}\left[\lambda^{1} \circ p, \lambda^{2} \circ p, \cdots, \lambda^{l-1} \circ p, \mu^{l}, \alpha \circ p\right] \\
& \quad \text { with relations }(\alpha \circ p)^{2}=1 \text { and } \mu^{l}(\boldsymbol{\alpha} \circ p)=\mu^{l} .
\end{aligned}
$$

The character ring of $O(2 l)$ was formerly presented by Minami [7] by different methods.

