On some dissipative boundary value problems for the Laplacian

By Daisuke FUJIWARA and Kôichi UCHIYAMA

(Received Feb. 26, 1971) (Revised June 18, 1971)

§ 1. Introduction.

Let Ω be a bounded domain in \mathbb{R}^{n+1} with boundary Γ of class C^{∞} . $\overline{\Omega} = \Omega \cup \Gamma$ is a C^{∞} -manifold with boundary. For a function u in $C^{\infty}(\overline{\Omega})$ and $s \in \mathbb{R}$, $||u||_s$ denotes Sobolev norm of u of order s.

We consider Laplacian $\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_{n+1}^2}$ in Ω together with the homogeneous boundary condition

$$\mathcal{B}u\Big|_{\Gamma} = \frac{\partial u}{\partial \nu} + (a+ib)u + (a_0+ib_0)u\Big|_{\Gamma} = 0$$
,

where ν is the unit exterior normal to Γ , a and b are real C^{∞} -vector fields on Γ and a_0 and b_0 are real C^{∞} -functions on Γ .

The following problem is still open: "Characterize those couples (Ω, \mathcal{B}) for which there exists a constant C such that the estimate

(1.1)
$$-\operatorname{Re}(\Delta u, u) + C\|u\|_{0}^{2} \ge 0$$

holds for any u in $C^2(\bar{\Omega})$ satisfying $\mathfrak{G}u|_{\Gamma}=0$.

A well-known necessary condition for the estimate (1.1) to hold is that

$$(1.2) |b(x)| \leq 1,$$

where |b(x)| is the length of the vector b(x), $x \in \Gamma$ ([6]). On the other hand if |b(x)| < 1 at every point $x \in \Gamma$, then there exist constants $C_0 > 0$ and C_1 such that the estimate

$$-\operatorname{Re}\left(\Delta u, u\right) + C_1 \|u\|_0^2 \ge C_0 \|u\|_1^2$$

holds for any u in $C^2(\bar{\Omega})$ satisfying $\mathfrak{B}u|_{\Gamma}=0$. (J. L. Lions [8], see also [1], [6], [10].)

In this note assuming (1.2), we are concerned with the following estimate:

Main part of this work was done when D. Fujiwara was staying at the Courant Institute of Mathematical Sciences, New York University, with the National Science Foundation, Grant NSF-GP-19617.