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Introduction

In the algebraic topology, in particular in the homotopy theory, abelian
groups are often treated by being devided into their $p$-primary component”
for various primes $p$ .

In the homotopy category of l-connected CW-complexes, an isomorphism
means a homotopy equivalence, which is of course an equivalence relation.
As is well known, a homotopy equivalence is such a map that it induces an
isomorphism on the integral homology group.

There might be three ways to generalize it in the $mod p$ sense.
First one is to define a $p$-equivalence so that it induces an isomorphism

on the homology group with $Z_{p}$-coefficient. A $p$-equivalence, however, is not
in general an equivalence relation even in the category of l-connected finite
CW-complexes. In fact, in [11] is shown an example, for which symmetricity
does not hold. To make it an equivalence relation, we have to work in the
category of $p$-universal spaces [12].

Next one is to define that $X$ and $Y$ are of same P-type, if there exist a
space $Z$ and $p$-equivalences $f:X\rightarrow Z$ and $g:Y\rightarrow Z$. Then it is easy to see
that a relation being of same $p$-type is an equivalence relation.

The last one is to consider a homotopy equivalence for “localized spaces
$X_{(p)}$

’ of $X$ at $p$ . It is a functor of l-connected CW-complexes into itself such
that if $f:X\rightarrow Y$ is a $p$-equivalence then the localization at $pf_{(p)}$ : $X_{(p)}\rightarrow Y_{(p\rangle}$

is a homotopy equivalence. The localization is studied by Adams [2],
Anderson [3], Bousfield-Kan and others. Our construction is a generalization
of Adams’ telescope [2], and has the following advantage:

THEOREM 2.5. If $X$ is a l-connected CW-complex of finite type, then
$H_{*}(X_{(p)})\cong H_{*}(X)\otimes Q_{p}$ and $\pi_{*}(X_{(p)})\cong\pi_{*}(X)\otimes Q_{p}$ , where $Q_{p}$ denotes the ring of
those fractions, whose denominators, in the lowest form, are prime to $p$ .

Also we show
COROLLARY 4.3. $X$ is homotopy equivalent to

$\prod_{x_{(0)}}X_{(p)}$
the pull back of $X_{(p)}$

over $X_{(0)}$ .
So we can study the topological properties of $X$ for each prime $p$


