On skew product transformations with quasi-discrete spectrum

By Nobuo AOKI

(Received Dec. 1, 1969) (Revised May 4, 1971)

§1. Introduction.

Let X and Y be unit intervals with Borel measurability and Lebesgue measure. Let $\Omega = X \otimes Y$ be the unit square with the usual direct product measurability and measure. We consider the following skew product (measure preserving) transformation defined on Ω ; let T be the measure preserving transformation with the α -function defined by $T: (x, y) \rightarrow (x+\gamma, y+\alpha(x))$ (additions modulo 1) where γ is an irrational number and $\alpha(\cdot)$ a real-valued measurable function defined on X.

The purpose of this paper is to give a criterion in order that the transformation T has quasi-discrete spectrum.

I am greatly indebted to the referee for many improvements on this paper.

§2. Definitions.

Let (Z, Σ, m) be a finite measure space and T an invertible measure preserving transformation on Z. We recall the following definition of quasiproper functions [1]. Let $G(T)_0$ be the set

$$\{\beta \in K: V_T f = \beta f, \|f\|_2 = 1 \text{ for } f \in L^2(Z)\},\$$

where V_T is the unitary operator induced by the transformation T and K the unit circle in the complex plane. For each positive integer i, let $G(T)_i \subset L^2(Z)$ be the set of all normalized functions f such that $V_T f = gf$ where $g \in G(T)_{i-1}$. The set $G(T)_i$ is the set of quasi-proper functions of order at most i. We put $G(T) = \bigcup_{i \ge 0} G(T)_i$. The transformation T is said to have quasi-discrete spectrum if the set G(T) spans $L^2(Z)$. If the set $G(T)_1$ of order 1 spans $L^2(Z)$, then it is well-known that T has discrete spectrum. If the transformation T is ergodic, then |f(x)| = 1 for arbitrary $f \in G(T)$. This implies that G(T) is a

Throughout this paper, any equality between functions are taken as the equality for almost all values of the variables.