On realization of the discrete series for semisimple Lie groups

By Ryoshi HOTTA

(Received Sept. 14, 1970)

§0. Introduction.

The main purpose of this paper is to show that most of the discrete series for a semisimple Lie group are realized on certain eigenspaces of the Casimir operator over the symmetric space. In more detail, let G be a connected noncompact semisimple Lie group with a finite dimensional faithful representation and K a maximal compact subgroup of G. Assume that rank $G = \operatorname{rank} K$ (according to [6, Theorem 13], G has a discrete series if and only if G satisfies this condition). Let V_{λ} be an irreducible unitary K-module with lowest weight $\lambda + 2\rho_k$, where ρ_k is the half sum of positive compact roots. We denote by $C^{\infty}(\mathcal{CV}_{\lambda})$ (resp. $L_2(\mathcal{CV}_{\lambda})$) the space consisting of all V_{λ} -valued C^{∞} (resp. squareintegrable) functions f on G such that $f(gk) = k^{-1}f(g)$ for $g \in G$, $k \in K$. Denoting by Ω the Casimir operator of G, let Ω act on $C^{\infty}(\mathcal{CV}_{\lambda})$ in the usual manner and denote by $\nu(\Omega)$ the differential operator given by the action of Ω on $C^{\infty}(\mathcal{CV}_{\lambda})$ in this sense (for a precise definition, see § 1). Put

$$\mathfrak{H}_{\lambda} = \{ f \in C^{\infty}(\mathcal{O}_{\lambda}) \cap L_{2}(\mathcal{O}_{\lambda}); \nu(\Omega) f = \langle \lambda + 2\rho, \lambda \rangle f \},$$

where ρ denotes the half sum of all positive roots and \langle , \rangle denotes the usual inner product on the set of weights induced by the Killing form. Since $\nu(\Omega)$ is elliptic on $C^{\infty}(\mathcal{CV}_{\lambda})$, \mathfrak{H}_{λ} is then a Hilbert space and gives a unitary representation of G through the left translation. Assume that $\langle \lambda + \rho, \alpha \rangle < 0$ for all positive roots α . Then, there exists a constant a such that if $|\langle \lambda + \rho, \beta \rangle|$ > a for all non-compact positive roots β , \mathfrak{H}_{λ} gives an irreducible unitary representation belonging to the discrete series for G, which is equivalent to the discrete class $\omega(\lambda + \rho)$ in the sense of [6] (§3, Corollary to Theorem 2). In view of Harish-Chandra's result [5], [6], the above result gives a procedure in order to realize most of the discrete series for G.

For our proof, we make use of the method established by M.S. Narasimhan and K. Okamoto in [11]. That is, the above result is deduced from Theorem 1 in § 2 and Lemma 9 in § 3, which amount to generalizations of the alternating sum formula and the vanishing theorem [11, Theorem 1 and Theorem 2] respectively.