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§0. Introduction.

The main purpose of this paper is to show that most of the discrete series
for a semisimple Lie group are realized on certain eigenspaces of the Casimir
operator over the symmetric space. In more detail, let G be a connected non-
compact semisimple Lie group with a finite dimensional faithful representation
and K a maximal compact subgroup of G. Assume that rank G=rank K
(according to [6, Theorem 13], G has a discrete series if and only if G satis-
fies this condition). Let V,; be an irreducible unitary /K-module with lowest
weight 2+42p;, where p; is the half sum of positive compact roots. We denote
by C*(cV;) (resp. L,(cV;)) the space consisting of all V;-valued C* (resp. square-
integrable) functions f on G such that f(gk)=Fk"'f(g) for g€ G, k=K.
Denoting by £ the Casimir operator of G, let £ act on C*(<V,) in the usual
manner and denote by v(£2) the differential operator given by the action of
2 on C*(<v;) in this sense (for a precise definition, see §1). Put

Or={e C(VINLVD; v(Df=<2+2p, 2> [},

where p denotes the half sum of all positive roots and <, > denotes the usual
inner product on the set of weights induced by the Killing form. Since v(£)
is elliptic on C=(<V,), $; is then a Hilbert space and gives a unitary repre-
sentation of G through the left translation. Assume that {A+p, a) <0 for
all positive roots a@. Then, there exists a constant a such that if [{A+p, 8|
> a for all non-compact positive roots B, $; gives an irreducible unitary
representation belonging to the discrete series for G, which is equivalent to
the discrete class w(4+p) in the sense of [6] (§3, Corollary to Theorem 2).
In view of Harish-Chandra’s result [5], [6], the above result gives a procedure
in order to realize most of the discrete series for G.

For our proof, we make use of the method established by M.S. Narasim-
han and K. Okamoto in [11]. That is, the above result is deduced from
Theorem 1 in §2 and Lemma 9 in § 3, which amount to generalizations of the
alternating sum formula and the vanishing theorem [11, Theorem 1 and
Theorem 27 respectively.



