Correction to my paper: Conjugate classes of Cartan subalgebras in real semisimple Lie algebras

(In this Journal vol. 11 (1959) 374-434)

By Mitsuo Sugiura

(Received Aug. 13, 1970)

In our previous paper [1], we stated in Theorem 7 (p. 415) that if $g=\mathfrak{f}+\mathfrak{p}$ is a real semisimple Lie algebra of the first category, then for any maximal admissible (i. e. strongly orthogonal) subset $\boldsymbol{F}=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ of \boldsymbol{R}_{p} (the set of non compact roots), the subspace

$$
\mathfrak{m}(\boldsymbol{F})=\sqrt{-1} \sum_{i=1}^{i} R\left(E_{\alpha_{i}}+E_{-\alpha_{i}}\right)
$$

is a maximal abelian subalgebra in \mathfrak{p}. However this statement is false as the example at the end of this note shows. We shall prove in this note that Theorem 7 in [1] remains valid if we replace a maximal admissible subset of $\boldsymbol{R}_{\mathfrak{p}}$ by an admissible subset of $\boldsymbol{R}_{\mathfrak{p}}$ having the maximal number of elements. In the remaining part of [1] §4, we used Theorem 7 to construct a maximal abelian subalgebra in \mathfrak{p}. As a matter of fact, all the maximal admissible sets in \boldsymbol{R}_{p} used in [1] have the maximal number of elements. Therefore all the results in §4 of [1] remain valid. We use the notation in §4 of [1]. In particular let $g=\mathfrak{f}+\mathfrak{p}$ be the real semisimple Lie algebra and its Cartan decomposition, \mathfrak{h} be a Cartan subalgebra of g contained in $\mathfrak{f}, \boldsymbol{R}$ be the set of all roots with respect to $\mathfrak{h}^{c}, E_{\alpha}(\alpha \in \boldsymbol{R})$ be a Weyl base corresponding to the compact form $\mathrm{g}_{u}=\mathfrak{f}+i \mathfrak{p}$, that is, $\mathrm{g}_{u}=\mathfrak{G}+\sum_{\alpha \in R}\left\{R\left(E_{\alpha}+E_{-\alpha}\right)+R \sqrt{-1}\left(E_{\alpha}-E_{-\alpha}\right)\right\}$.

Lemma 1. The sum of three non compact positive roots is not a root.
Proof. Let $B=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ be the set of all simple roots with respect to the given linear order in \boldsymbol{R} and $\beta=\sum_{i=1}^{r} m_{i} \alpha_{i}$ be the maximal root in \boldsymbol{R}. Any root $\alpha=\sum_{i=1}^{r} n_{i} \alpha_{i}$ satisfies the inequality

$$
\begin{equation*}
n_{i} \leqq m_{i} \quad(1 \leqq i \leqq r) \tag{1}
\end{equation*}
$$

We can assume that g is simple. In this case there exists only one non compact root, say α_{j}, in B. The coefficients of α_{j} in β satisfies

$$
\begin{equation*}
1 \leqq m_{j} \leqq 2 \tag{2}
\end{equation*}
$$

The set \boldsymbol{R}^{+}of all non compact positive roots is given by

