Satake compactification and the great Picard theorem

By Shoshichi KOBAYASHI* and Takushiro OCHIAI

(Received June 8, 1970)

§1. Introduction.

Let Δ be the unit disk $\{z \in C; |z| < 1\}$ in the complex plane and Δ^* the punctured disk $\{z \in C; 0 < |z| < 1\}$. Let $P_1(C)$ be the 1-dimensional complex projective space, $P_1(C) = C \cup \{\infty\}$. Delete three points, say, 0, 1, ∞ , from $P_1(C)$. The great Picard theorem says that every holomorphic mapping $f: \Delta^* \to P_1(C) - \{0, 1, \infty\}$ can be extended to a holomorphic mapping $f: \Delta \to P_1(C)$.

We consider a generalization of the great Picard theorem. Given a complex space M, let d_M be the intrinsic pseudo-distance introduced in [3]. We say that M is hyperbolic if d_M is a distance on M. For example, $P_1(C) - \{0, 1, \infty\}$ is hyperbolic. Consider the following question.

"Let Y be a complex space and M a complex hyperbolic subspace of Y such that its closure \overline{M} is compact. Does every holomorphic mapping $f: \Delta^* \to M$ extend to a holomorphic mapping $f: \Delta \to Y$?"

The answer is, in general, negative as shown by Kiernan [2] (see also [4, Ch. VI, §1]). On the other hand, we have the following result, [4].

THEOREM 1. Let Y be a complex space and M a complex subspace of Y satisfying the following conditions:

(1) M is hyperbolic;

(2) the closure \overline{M} of M is compact;

(3) Given a point p on the boundary $\partial M = \overline{M} - M$ and a neighborhood \mathcal{V} of p, there exists a smaller neighborhood \mathcal{V} of p in Y such that

$$d_M(M \cap (Y-U), M \cap CV) > 0$$
.

Let X be a complex manifold and A a locally closed complex submanifold of X. Then every holomorphic mapping $X \rightarrow A \rightarrow M$ extends to a holomorphic mapping $X \rightarrow Y$.

It has been shown in [4; Ch. VI, §6] that if $Y = P_2(C)$ and $M = P_2(C) - Q$, where Q is a complete quadrilateral, then the three conditions of Theorem 1 are satisfied. Hence, every holomorphic mapping of X-A into $P_2(C)-Q$ extends to a holomorphic mapping of X into $P_2(C)$. This may be considered

^{*} Partially supported by NSF Grant GP-8008.