Characterization of the simple components of the group algebras over the *p*-adic number field

By Toshihiko YAMADA¹⁾

(Received April 27, 1970)

§1. Introduction.

Let G be a finite group and K a field of characteristic 0. Then the group algebra K[G] of G with respect to K is semisimple. We can write it as a direct sum

$$K[G] = A_1 \oplus A_2 \oplus \cdots \oplus A_r$$

of simple algebras. Each A_i is in one-to-one correspondence with a family T_i of absolutely irreducible characters $\chi_{i\nu}(\nu = 1, \dots, t_i)$ of G, taken in the algebraic closure \overline{K} of K and algebraically conjugate to each other over K. Each simple algebra A_i is isomorphic to a complete matrix algebra $M_{\rho_i}(\mathcal{A}_i)$ of a certain degree ρ_i with coefficients in a division algebra \mathcal{A}_i over K. Let $K(\chi_{i\nu})$ denote the field obtained from K by adjoining all values $\chi_{i\nu}(g)$ with $g \in G$ of the character $\chi_{i\nu}$. It turns out that the center Ω_i of \mathcal{A}_i is isomorphic to $K(\chi_{i\nu})$ for $\chi_{i\nu} \in T_i$. If the dimension of \mathcal{A}_i over Ω_i is m_i^2, m_i is called the Schur index of the division algebra \mathcal{A}_i or of the characters $\chi_{i\nu}$ ($\nu = 1, \dots, t_i$).

Now we are faced with the problem: Characterize division algebras which appear at simple components of group algebras.

In this paper this problem is solved for division algebras over the *p*-adic number field Q_p , where *p* is any odd prime number. Namely, we shall prove the following

THEOREM 1. Let p be an odd prime number. Denote by Ξ the field obtained from Q_p by adjoining all primitive roots of unity ζ_n $(n=3,4,5,\cdots)$. Then, a given (finite dimensional) division algebra Δ over Q_p appears at a simple component of the group algebra $Q_p[G]$ over Q_p of a certain finite group G if and only if (i) the center k of Δ is a finite extension field of Q_p contained in Ξ , and (ii) the Hasse invariant of Δ is of the form

$$z/\frac{p-1}{b} \pmod{Z}$$
, $z \in Z$,

where Z is the ring of rational integers and b is the index of tame ramification

1) This work was supported in part by The Sakkokai Foundation.