On certain double coset spaces of algebraic groups

to Elaine

By Kenichi IYANAGA

(Received April 27, 1970)

Introduction.

Let k be an algebraic number field of finite degree and \mathcal{O}_k its ring of integers. Let V be a finite dimensional vector space over k, W its proper subspace $(W \neq \{0\})$, and L an \mathcal{O}_k -lattice in V. For a subgroup G of GL(V), we put $G_W = \{g \in G \mid g(W) = W\}$, $G_L = \{g \in G \mid g(L) = L\}$.

Let G = Sp(V, A), SO(V, B) or SU(V, H), where A is a non-degenerate alternating form, B is a non-degenerate quadratic form, and H is a nondegenerate Hermitian form over a quadratic extension K/k. Let W be a proper totally isotropic subspace of V. Then $G_W = P$ is a maximal k-parabolic subgroup of G, and the arithmetic subgroup G_L may be regarded as a discrete subgroup of the Lie group $\underline{G} = (\mathcal{R}_{k/Q}(G))_R$. Suppose that there exists a maximal compact subgroup \mathcal{K} of \underline{G} such that $D = \underline{G}/\mathcal{K}$ has the structure of a symmetric bounded domain. Then the subspace W corresponds with a rational boundary component X of \overline{D} and the double coset space $G_L \setminus G/P$ is in bijective correspondence with the set of G_L -orbits among $\{g(X) | g \in G\}$.

The finiteness of such double coset spaces was proved by Godement [5] and Borel (cf. [2]) for the cases where G is a connected matric group, $G_L = G_{\mathcal{O}_k}$ and P is any k-parabolic subgroup of G.

In [6], the author gave an estimation of the number of such double coset spaces for G = SU(V, H) under a certain condition. The purpose of the present paper is to generalize the results obtained in [6].

If G = SO(V, B) (except when dim $V = 2 \cdot \dim W$) or SU(V, H), the problem to determine the above numbers is reduced to the problem of determining the order $|\tilde{G}_L \setminus \tilde{G}/\tilde{G}_W|$ where $\tilde{G} = O(V, B)$ or U(V, H) respectively. (1.3, 4.18.)

To determine the order $|\tilde{G}_L \setminus \tilde{G}/\tilde{G}_W|$ we use a certain decomposition of the lattice L ('W-decomposition'). To explain, suppose, for example, that the space V is supplied with a non-degenerate quadratic form B, and that W is a totally isotropic subspace of V. Then there exists a basis $\{w_1, \dots, w_s; w'_1, \dots, w'_s; u_1, \dots, u_r\}$ of V such that $W = \sum_{i=1}^s kw_i$, $B(w_i, w'_j) = \delta_{ij}$, $B(w'_i, w'_j) = 0$ for $i, j = 1, \dots, s$; $B(u_i, w_j) = B(u_i, w'_j) = 0$ for $i = 1, \dots, r$; $j = 1, \dots, s$. If the lattice L is modular, then we can show that a similar decomposition of L