On certain double coset spaces of algebraic groups

to Elaine

By Kenichi Iyanaga

(Received April 27, 1970)

Introduction.

Let k be an algebraic number field of finite degree and \mathcal{O}_{k} its ring of integers. Let V be a finite dimensional vector space over k, W its proper subspace $(W \neq\{0\})$, and L an \mathcal{O}_{k}-lattice in V. For a subgroup G of $G L(V)$, we put $G_{W}=\{g \in G \mid g(W)=W\}, G_{L}=\{g \in G \mid g(L)=L\}$.

Let $G=\operatorname{Sp}(V, A), S O(V, B)$ or $S U(V, H)$, where A is a non-degenerate alternating form, B is a non-degenerate quadratic form, and H is a nondegenerate Hermitian form over a quadratic extension K / k. Let W be a proper totally isotropic subspace of V. Then $G_{W}=P$ is a maximal k-parabolic subgroup of G, and the arithmetic subgroup G_{L} may be regarded as a discrete subgroup of the Lie group $G=\left(\mathcal{R}_{k / Q}(G)\right)_{R}$. Suppose that there exists a maximal compact subgroup \mathcal{K} of \underline{G} such that $D=\underline{G} / \mathcal{K}$ has the structure of a symmetric bounded domain. Then the subspace W corresponds with a rational boundary component X of \bar{D} and the double coset space $G_{L} \backslash G / P$ is in bijective correspondence with the set of G_{L}-orbits among $\{g(X) \mid g \in G\}$.

The finiteness of such double coset spaces was proved by Godement [5] and Borel (cf. [2]) for the cases where G is a connected matric group, $G_{L}=G_{O_{k}}$ and P is any k-parabolic subgroup of G.

In [6], the author gave an estimation of the number of such double coset spaces for $G=S U(V, H)$ under a certain condition. The purpose of the present paper is to generalize the results obtained in [6].

If $G=S O(V, B)$ (except when $\operatorname{dim} V=2 \cdot \operatorname{dim} W$) or $S U(V, H)$, the problem to determine the above numbers is reduced to the problem of determining the order $\left|\tilde{G}_{L} \backslash \tilde{G} / \tilde{G}_{W}\right|$ where $\tilde{G}=O(V, B)$ or $U(V, H)$ respectively. (1.3, 4.18.)

To determine the order $\left|\tilde{G}_{L} \backslash \tilde{G} / \tilde{G}_{W}\right|$ we use a certain decomposition of the lattice L (' W-decomposition'). To explain, suppose, for example, that the space V is supplied with a non-degenerate quadratic form B, and that W is a totally isotropic subspace of V. Then there exists a basis $\left\{w_{1}, \cdots, w_{s}\right.$; $\left.w_{1}^{\prime}, \cdots, w_{s}^{\prime} ; u_{1}, \cdots, u_{r}\right\}$ of V such that $W=\sum_{i=1}^{s} k w_{i}, B\left(w_{i}, w_{j}^{\prime}\right)=\delta_{i j}, B\left(w_{i}^{\prime}, w_{j}^{\prime}\right)=0$ for $i, j=1, \cdots, s ; B\left(u_{i}, w_{j}\right)=B\left(u_{i}, w_{j}^{\prime}\right)=0$ for $i=1, \cdots, r ; j=1, \cdots, s$. If the lattice L is modular, then we can show that a similar decomposition of L

