Radicals of gamma rings

By William E. COPPAGE and Jiang LUH

(Received March 16, 1970)

§1. Introduction

Let *M* and Γ be additive abelian groups. If for all *a*, *b*, *c* \in *M* and α , $\beta \in \Gamma$, the following conditions are satisfied,

(1) $a\alpha b \in M$

(2) $(a+b)\alpha c = a\alpha c + b\alpha c$ $a(\alpha+\beta)b = a\alpha b + a\beta b$ $a\alpha(b+c) = a\alpha b + a\alpha c$

(3) $(a\alpha b)\beta c = a\alpha(b\beta c)$,

then, following Barnes [1], M is called a Γ -ring. If these conditions are strengthened to,

(1') $a\alpha b \in M$, $\alpha a\beta \in \Gamma$

- (2') same as (2)
- (3') $(a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c)$

(4') $x\gamma y = 0$ for all $x, y \in M$ implies $\gamma = 0$,

then M is called a Γ -ring in the sense of Nobusawa [5].

Any ring can be regarded as a Γ -ring by suitably choosing Γ . Many fundamental results in ring theory have been extended to Γ -rings: Nobusawa [5] proved the analogues of the Wedderburn-Artin theorems for simple Γ rings and for semi-simple Γ -rings (but see [4]); Barnes [1] obtained analogues of the classical Noether-Lasker theorems concerning primary representations of ideals for Γ -rings; Luh [3, 4] gave a generalization of the Jacobson structure theorem for primitive Γ -rings having minimum one-sided ideals, and obtained several other structure theorems for simple Γ -rings.

In this paper the notions of Jacobson radical, Levitzki nil radical, nil radical and strongly nilpotent radical for Γ -rings are introduced, and Barnes' [1] prime radical is studied further. Inclusion relations for these radicals are obtained, and it is shown that the radicals all coincide in the case of a Γ -ring which satisfies the descending chain condition on one-sided ideals. The other usual radical properties from ring theory are similarly considered.

For all notions relevant to ring theory we refer to [2].