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\S 1. Introduction.

Let $P$ be a differential operator of first order in two independent vari-
ables $x$ and $y$ ,

$P=a(x, y)\frac{\partial}{\partial x}+b(x, y)\frac{\partial}{\partial y}+c(x, y)$ .

Here we assume that the coefficients $a,$ $b$ and $c$ are (complex-valued) real
analytic functions defined in an open set $\Omega$ in $R^{2}$ , and that

$|a(x, y)|+|b(x, y)|\neq 0$ .
In this paper we shall study conditions for the local existence and an-

alyticity of hyperfunction solutions of the equation $Pu=f$. The basic facts
about the theory of hyperfunctions may be found in [2], [4]. We denote by
$\mathcal{A},$ $\mathcal{B}$ , and $\mathcal{O}$ the sheaves of real analytic functions, hyperfunctions, and holo-
morphic functions, respectively.

Let $p$ be the principal part of $P$. We define the k-th commutator $c_{p}^{k}$ of
$p$ by induction:

$c_{p}^{0}=\overline{p}=the$ operator with complex conjugate coefficients,

$c_{p}^{k}=[p, c_{p}^{k-1}]=pc_{p}^{k-1}-c_{p}^{k-1}p$ .
Let $k_{p}(x, y)$ denote the first value of $k$ for which $c_{p}^{k}$ is not proportional to $p$

at the point $(x, y)$ . If $c_{p}^{k}$ is proportional to $p$ for all values of $k$ , we define
$k_{p}(x, y)$ to be $\infty$ . Note that $P$ is elliptic at $(x, y)$ , if and only if $k_{p}(x, y)=0$ .
It is easily seen that $k_{p}(x, y)$ does not depend on the choice of local coordi-
nates, and that it is invariant under multiplication of $P$ by a non-vanishing
function.

Our main results are the following two theorems which state the relation
between the parity of $k_{p}(x, y)$ and the analyticity and existence of hyper-
function solutions of $Pu=f$.


