On complex hypersurfaces of the complex projective space II

By Koichi OGIUE*

(Received Nov. 26, 1969)

§1. Introduction

Let $P_{n+1}(C)$ be the complex projective space of complex dimension n+1 with the Fubini-Study metric of constant holomorphic sectional curvature 1 and let M be a complex hypersurface of $P_{n+1}(C)$ with the induced Kaehler structure. The purpose of this paper is to prove the following theorem.

THEOREM. Let M be a complete complex hypersurface of $P_{n+1}(C)$. If $n \ge 2$ and if every sectional curvature of M is greater than 1/8, then M is a complex hyperplane $P_n(C)$.

Postponing the proof of the theorem to the following section, we shall list here results in the same direction. For the sake of simplicity, we shall adopt the following notations: for example,

 $K > \delta$: every sectional curvature of M is greater than δ ,

 $H > \delta$: every holomorphic sectional curvature of M is greater than δ .

A. If M is complete and if $K \ge \frac{1}{4}$, then $M = P_n(C)$ provided $n \ge 2$.

In a recent paper ([5]), K. Nomizu proved (A) in case of $n \ge 3$. But (A) is an immediate consequence of the following well known results ([1], [2], [7]):

- (a) $H \leq 1$ for a complex hypersurface of $P_{n+1}(C)$.
- (b) If $H \ge 0$, then a maximum curvature is holomorphic.
- (c) If $n \ge 2$ and if $\delta \le K \le 1$, then $\frac{\delta(8\delta+1)}{1-\delta} \le H$.

The assumption of (A), together with (a) and (b), implies $\frac{1}{4} \leq K \leq 1$ and hence (a) and (c) imply H=1 so that $M=P_n(C)$.

In [6] we proved

B. If M is complete and if $H > \frac{1}{2}$, then $M = P_n(C)$.

Let z_0, z_1, \dots, z_{n+1} be a homogeneous coordinate system of $P_{n+1}(C)$ and let $Q_n(C) = \{(z_0, \dots, z_{n+1}) \in P_{n+1}(C) | \sum z_i^2 = 0\}$. Then it is known that $\frac{1}{2} \leq H \leq 1$

^{*} Work done under partial support by the Sakko-kai Foundation.