Multiplications in cohomology theories with coefficient maps

By Nobuhiro ISHIKAWA

(Received Oct. 27, 1969)

Introduction

S. Araki and H. Toda [3] discussed the multiplicative structures in mod q generalized cohomology theories. The mod q (reduced) cohomology of a cohomology h was defined by $\tilde{h}^i(; Z_q) = \tilde{h}^{i+2}(\land M_q)$ where M_q is a co-Moore space of type $(Z_q, 2)$. In this paper we consider the cohomology theories with stable maps of spheres as coefficients, i. e., let C_α be a mapping cone of a stable map $\alpha \in \{S^{r+k-1}, S^r\}$ then α -coefficient (reduced) cohomology of a cohomology h is defined by $\tilde{h}^i(; \alpha) = \tilde{h}^{i+r+k}(\land C_\alpha)$. And we discuss the multiplicative structures in α -coefficient cohomology theories by postulating three axioms (Λ_1) , (Λ_2) and (Λ_3) as in [3]. (Λ_1) and (Λ_3) are quite similar with these of [3], but (Λ_2) is not a routine generalization of that of [3] but contains an extra element. A multiplication in an α -coefficient cohomology theory satisfying (Λ_1) , (Λ_2) and (Λ_3) is called "an admissible multiplication".

One of the important examples of α -coefficient cohomologies other than mod q theories is the case $\alpha = \eta$ (a stable class of the Hopf map $S^3 \rightarrow S^2$) and h = KO. In the case $\alpha = \eta$ for any h a sufficient condition for existence of admissible multiplications in $\tilde{h}(;\eta)$ is obtained (Theorem 4.11). Obviously \widetilde{KO} -theory satisfies this condition. In this case $\widetilde{KO}(;\eta)$ can be identified with the cohomology \widetilde{KU} by Wood isomorphism [2], where an admissible multiplication corresponds to the multiplication in \widetilde{KU} defined by tensor products (Theorem 5.3).

Some uniqueness type theorems of admissible multiplications are discussed in general, which states that admissible multiplications are in a one-to-one correspondence with elements of a group which is specific to the considered cohomology theory under the assumption that the original multiplication is commutative and associative (Corollary 2.8). In the case of h = KO and $\alpha = \eta$ this group is isomorphic to Z, hence there are countably many different admissible multiplications in $\widetilde{KO}(; \eta)$.

In §1 we exhibit some elements of α -coefficient cohomology theory: reduc-