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Introduction

Recent developments in the theory of semi-groups of nonlinear trans-
formations in Banach or Hilbert spaces have sharply brought into focus the
fact that these theories must be developed for semi-groups on convex sets
in order to achieve their full scope. Motivated by the results of [1], [6] and
[10], the purpose of this note is to establish existence of solutions of a Cauchy
problem of the form

(1) $\frac{du}{dt}=g(u, t)$ , $u(0)=x$ ,

where the function $g$ is only defined on a set of the form $C\times[0, a]$ for some
convex set $C$ in a Banach space. The methods used are not new (see, e. g.,
[3], [8]), but the main result seems to have gone unnoticed and serves to
clarify some of the theory of semi-groups of nonlinear transformations and
the related theory of accretive mappings in Banach spaces.

Simple (but basic) existence theorems for (1) are established in Section 1.
Section 2 contains applications of these results to the theory of nonlinear
pseudo-contractive and accretive operators. For aesthetic reasons, applications
to the semi-group theory (where one must deal with ”multi-valued” mappings)

are not given here.

\S 1. Existence and Uniqueness

The main topic of this section is existence. Uniqueness is established
only in simple cases of interest. Let $X$ be a real Banach space and $C$ be a
closed convex subset of $X$. We begin by establishing a local existence theorem
of some generality. Denote by $B.(x)$ the closed ball of radius $r$ in $X$ centered
at $x$ . Consider the set

(1.1) $K=(B_{r}(x)\cap C)\times[0, a]$ .
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