Hecke operators in cohomology of groups

By Y.H. RHIE and G. WHAPLES

(Received June 9, 1969)

Given a group G, with a subgroup Γ , one can always formulate the socalled Hecke rings whose elements are certain double cosets, called Hecke operators as introduced by Shimura in [4]. The study of the action of Hecke operators on the cohomology groups $H^{k}(\Gamma, \rho)$ with a linear representation ρ of G, defined by Kuga in [2], appears to be important in the number theory of automorphic forms, in the formulation of various "trace formulas", when the groups were Lie groups with discrete subgroups Γ , where the cohomology groups $H^{k}(\Gamma, \rho)$ were treated analytically and expressed as spaces of harmonic forms associated with the representation ρ .

In this paper, we shall deal purely algebraically with the Hecke operators on the cohomology groups $H^{k}(\Gamma, A)$ of arbitrary subgroups Γ of any abstract group G over a G-module A. The action of Hecke operators on $H^{k}(\Gamma, A)$, formulated by Kuga in [2] when G is a Lie group, turns out to be a sort of transfer map in the cohomology of groups.

In Section I, we described the Hecke rings $\mathcal{R}(G, \Delta, \Gamma)$, and in Section II we obtained a representation of the Hecke rings $\mathcal{R}(G, \Delta, \Gamma)$ over the cohomology groups $H^{k}(\Gamma, A)$ with an explicit formula. In the last section, we computed the effect of Hecke operators on $H^{k}(\Gamma, A)$ for a cyclic group Γ of $SL(2, \mathbb{Z}/p\mathbb{Z})$.

I. Hecke rings

1. Let G be a group. Two subgroups Γ and Γ' of G are said to be commensurable, denoted by $\Gamma \approx \Gamma'$, if the intersection of Γ and Γ' is of finite index with respect to both Γ and Γ' ; in notation, $\Gamma \approx \Gamma' \Leftrightarrow [\Gamma : \Gamma \cap \Gamma']$ $< \infty$ and $[\Gamma' : \Gamma \cap \Gamma'] < \infty$. Then the commensurability is an equivalence relation and is invariant under conjugation, namely, $\Gamma \approx \Gamma'$ if and only if $\alpha^{-1}\Gamma \alpha = \Gamma^{\alpha} \approx \Gamma'^{\alpha}$. Let $\tilde{\Gamma}$ be the set of all elements α of G with $\Gamma^{\alpha} \approx \Gamma$.

PROPOSITION 1.1. $\tilde{\Gamma}$ is a subgroup of G.

PROOF. Given α and β in $\tilde{\tilde{\Gamma}}$, we have $\tilde{\Gamma}^{\alpha\beta} = (\alpha^{-1}\Gamma\alpha)^{\beta} \approx \Gamma^{\beta} \approx \Gamma$ and so $\alpha\beta$ belongs to $\tilde{\Gamma}$. By substituting α^{-1} for β , $\Gamma = (\alpha^{-1}\Gamma\alpha)^{\alpha-1} \approx \Gamma^{\alpha-1}$ implies $\alpha^{-1} \in \tilde{\Gamma}$.