Some class of doubly transitive groups of degree nand order 4q(n-1)n where q is an odd number

By Hiroshi KIMURA¹⁾ and Hiroyoshi YAMAKI²⁾

(Received Sept. 30, 1969) (Revised Nov. 20, 1969)

1. Introduction.

In this paper we shall consider the following situation (*):

(*) A simple group \mathfrak{G} is doubly transitive on $\Omega = \{1, 2, \dots, n\}$ of order aq(n-1)n where a = 2 or 4 and q is an odd number. The stabilizer \mathfrak{R} of two points in Ω is cyclic and $\mathfrak{R} \cap A^{-1}\mathfrak{R}A = 1$ or \mathfrak{R} for every element A in \mathfrak{G} .

Our purpose is to prove the following theorem.

THEOREM. In our situation (*) \otimes is isomorphic to the projective special linear group PSL(2, 4q+1) or PSL(2, 8q+1).

REMARK. This theorem was proved by Ito [9] and Kimura [10] in the case of q=1. Thus we assume that $q \ge 3$ in the following.

The problem of characterization of doubly transitive groups by the structure of the stabilizer of two points was presented by Bender [1], Ito [9] and Kimura [11], [12], [13].

NOTATION. The stabilizer of points i, j, \dots, k in \mathfrak{G} is denoted by $\mathfrak{G}_{ij\cdots k}$. On the other hand $\mathfrak{G}_{(ij\cdots k)}$ will denote the stabilizer in \mathfrak{G} of a set $\{i, j, \dots, k\}$ of points. For the subset \mathfrak{X} of \mathfrak{G} , $\mathfrak{I}(\mathfrak{X})$ will denote the set of all the fixed points of \mathfrak{X} . For the elements A, B, \dots of $\mathfrak{G}, \langle A, B, \dots \rangle$ is the subgroup of \mathfrak{G} generated by A, B, \dots and $A \sim B$ means that A is conjugate with B. For a group $\mathfrak{W}, Z(\mathfrak{W})$ and \mathfrak{W}' denote respectively the center of \mathfrak{W} and the commutator subgroup of \mathfrak{W} . If \mathfrak{S} is a 2-group, $\Omega_1(\mathfrak{S})$ denote the subgroup of \mathfrak{S} generated by all involutions in \mathfrak{S} .

ACKNOWLEDGEMENT. The second author proved our theorem for a=4 with an additional condition. The first author found that this additional condition is unnecessary and that the case a=2 can be proved in the same way.

¹⁾ This work was partially supported by The Sakkokai Foundation.

²⁾ This work was partially supported by The Yukawa fellowship.