Some class of doubly transitive groups of degree n and order $4 \boldsymbol{q}(\boldsymbol{n}-1) \boldsymbol{n}$ where \boldsymbol{q} is an odd number

By Hiroshi Kimura ${ }^{1)}$ and Hiroyoshi Yamaki ${ }^{2)}$

(Received Sept. 30, 1969)
(Revised Nov. 20, 1969)

1. Introduction.

In this paper we shall consider the following situation (*):
(*) A simple group \mathbb{B} is doubly transitive on $\Omega=\{1,2, \cdots, n\}$ of order $a q(n-1) n$ where $a=2$ or 4 and q is an odd number. The stabilizer \mathfrak{R} of two points in Ω is cyclic and $\mathfrak{\Re} \cap A^{-1} \mathfrak{\Re} A=1$ or $\mathfrak{\Re}$ for every element A in \mathbb{G}.

Our purpose is to prove the following theorem.
Theorem. In our situation (*) (B) is isomorphic to the projective special linear group $\operatorname{PSL}(2,4 q+1)$ or $\operatorname{PSL}(2,8 q+1)$.

Remark. This theorem was proved by Ito [9] and Kimura [10] in the case of $q=1$. Thus we assume that $q \geqq 3$ in the following.

The problem of characterization of doubly transitive groups by the structure of the stabilizer of two points was presented by Bender [1], Ito [9] and Kimura [11], [12], [13].

Notation. The stabilizer of points i, j, \cdots, k in \mathbb{E} is denoted by $\mathbb{E}_{i j \cdots k}$. On the other hand $\mathscr{G}_{\{i j \cdots k\}}$ will denote the stabilizer in © of a set $\{i, j, \cdots, k\}$ of points. For the subset \mathfrak{X} of $\mathfrak{A}, \mathfrak{\Im}(\mathfrak{X})$ will denote the set of all the fixed points of \mathfrak{X}. For the elements A, B, \cdots of $\mathfrak{G},\langle A, B, \cdots\rangle$ is the subgroup of (B) generated by A, B, \cdots and $A \sim B$ means that A is conjugate with B. For a group $\mathfrak{W}, Z(\mathfrak{W})$ and \mathfrak{W}^{\prime} denote respectively the center of \mathfrak{W} and the commutator subgroup of \mathfrak{W}. If \mathbb{S} is a 2 -group, $\Omega_{1}(\mathbb{S})$ denote the subgroup of \mathbb{S} generated by all involutions in \mathbb{S}.

Acknowledgement. The second author proved our theorem for $a=4$ with an additional condition. The first author found that this additional condition is unnecessary and that the case $a=2$ can be proved in the same way.

1) This work was partially supported by The Sakkokai Foundation.
2) This work was partially supported by The Yukawa fellowship.
