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1. Introduction and statement of results.

In this note, we shall show some examples of non-simply-connected mani-
folds for which Hauptvermutung holds. Mitsuyoshi Kato introduced the
concept of homotopy neighborhoods and proved the classification theorem

\langle $[1]$). This concept is the basis for this note.
DEFINITION 1. Let $P$ be a finite connected (simplicial) complex, then an

abstract homotopy neighborhood $M$ of $P$ is a compact pl. manifold satisfying
the following conditions:

1.) $P$ is a subcomplex of $M$ and contained in Int $M$.
2.) $(M, bM)$ is 2-connected.
3.) $P$ is a deformation retract of $M$.
In the following, all manifolds are to be (orientable and) oriented and

homeomorphisms are to be orientation preserving, we denote by $N(K, X)$ a
regular neighborhood of a subcomplex $K$ in a pl. manifold $X,$ $\cong$ represents
a pl. homeomorphism, and the Whitehead torsion of a homotopy equivalence
$f$ : $P\rightarrow Q$ will be denoted by $\tau(f)$ and considered as an element of Wh $(\pi_{1}(P))$

as in [1].

Our results are as follows.
THEOREM 1. Let $M^{n}$ be an abstract homotopy neighborhood of a finite

acyclic complex $P^{p}$ , and $M^{\prime n}$ a $pl$ . manifold. Suppose $n\geqq 6,$ $n\geqq 2p+2$ and there
exists a homeomorphism $f:M^{n}\rightarrow M^{\prime n}$ with $\tau(f)=0$ . Then there exists a $p[$ .
homeomorphism $g:M^{n}\rightarrow M^{\prime n}$ such that $g$ is homotopic to $f$.

COROLLARY 1. Let $M^{n}$ be an abstract homotopy neighborhood of a finite
acyclic complex $P^{p}$ of which 3-skelton $P^{3}$ is r-simple for $3\leqq r<p$ . If $n\geqq 6$ ,
$n\geqq 2p+2$ , then Hauptvermutung holds for $M^{n}$ .

Let $M^{n}$ be a compact connected pl. manifold and let $\eta:k_{PL}(M)\rightarrow k_{TOP}(M)$

be the natural map.
THEOREM 2. Let $W^{n+k}$ be an abstract homotopy neighborhood of a con-

nected closed $pl$ . manifold $M^{n}$ such that $\eta$ : $k_{PL}(M)\rightarrow k_{TOP}(M)$ is injective and
$W^{\prime n+k}$ a $pl$ . manifold. Suppose $k\geqq n+2,$ $n+k\geqq 6$ and there exists a homeomor-
phism $f:W\rightarrow W^{\prime}$ with $\tau(f)=0$ . Then there exists a $pl$ . homeomorphism $g:W$


