Abstract homotopy neighborhoods and Hauptvermutung

By Shigeo ICHIRAKU

(Received June 6, 1969) (Revised Jan. 16, 1970)

1. Introduction and statement of results.

In this note, we shall show some examples of non-simply-connected manifolds for which Hauptvermutung holds. Mitsuyoshi Kato introduced the concept of homotopy neighborhoods and proved the classification theorem ([1]). This concept is the basis for this note.

DEFINITION 1. Let P be a finite connected (simplicial) complex, then an abstract homotopy neighborhood M of P is a compact pl. manifold satisfying the following conditions:

- 1.) P is a subcomplex of M and contained in Int M.
- 2.) (M, bM) is 2-connected.
- 3.) P is a deformation retract of M.

In the following, all manifolds are to be (orientable and) oriented and homeomorphisms are to be orientation preserving, we denote by N(K, X) a regular neighborhood of a subcomplex K in a pl. manifold X, \cong represents a pl. homeomorphism, and the Whitehead torsion of a homotopy equivalence $f: P \rightarrow Q$ will be denoted by $\tau(f)$ and considered as an element of Wh $(\pi_1(P))$ as in [1].

Our results are as follows.

THEOREM 1. Let M^n be an abstract homotopy neighborhood of a finite acyclic complex P^p , and M'^n a pl. manifold. Suppose $n \ge 6$, $n \ge 2p+2$ and there exists a homeomorphism $f: M^n \to M'^n$ with $\tau(f) = 0$. Then there exists a pl. homeomorphism $g: M^n \to M'^n$ such that g is homotopic to f.

COROLLARY 1. Let M^n be an abstract homotopy neighborhood of a finite acyclic complex P^p of which 3-skelton P^s is r-simple for $3 \le r < p$. If $n \ge 6$, $n \ge 2p+2$, then Hauptvermutung holds for M^n .

Let M^n be a compact connected pl. manifold and let $\eta: k_{PL}(M) \rightarrow k_{TOP}(M)$ be the natural map.

THEOREM 2. Let W^{n+k} be an abstract homotopy neighborhood of a connected closed pl. manifold M^n such that $\eta: k_{PL}(M) \to k_{TOP}(M)$ is injective and W'^{n+k} a pl. manifold. Suppose $k \ge n+2$, $n+k \ge 6$ and there exists a homeomorphism $f: W \to W'$ with $\tau(f)=0$. Then there exists a pl. homeomorphism g: W