On the imbedding problem of Galois extensions

By Norio Adachi

(Received April 15, 1969) (Revised Feb. 14, 1970)

Introduction

Let Ω be a field, and k a finite Galois extension of Ω with Galois group $g = G(k/\Omega)$. Let $\varphi: G \to g$ be a homomorphism of a finite group G onto g with kernel A. Then we have an exact sequence

$$1 \longrightarrow A \longrightarrow G \xrightarrow{\varphi} \mathfrak{g} \longrightarrow 1.$$
 (1)

We say that the imbedding problem $(k/\Omega, G, \varphi)$ associated with the exact sequence (1) is solvable, if there exists a Galois algebra K^{*} over Ω with Galois group $\mathfrak{G} = G(K/\Omega)$ such that:

- 1) There is an isomorphism π of G onto \mathfrak{G} .
- 2) k is contained in K, and it is the fixed subalgebra of K under A^{π} .
- 3) φ is the composite of π with the naturally induced epimorphism of G onto g.

Such a K is said to be a solution of the imbedding problem. (For simplicity we shall write g instead of g^{π} for $g \in G$.)

We shall be concerned with the imbedding problem only when the following conditions are satisfied:

- 1) The group A is abelian.
- 2) The characteristic of the field Ω is relatively prime to the order of A.

The purpose of the present paper is to summarize some properties about the imbedding problem, as a preparation to prove the main theorem in the author's following paper.

$\S1$. A necessary condition for the solvability of the imbedding problem

1.1. For $s \in \mathfrak{g}$ choose an element $g_s \in G$ such that

*) A commutative algebra K over Ω is called a Galois algebra with Galois group \mathfrak{G} , if the following conditions are satisfied: 1) K is semi-simple, 2) \mathfrak{G} is a group of automorphisms of K over Ω , 3) K is isomorphic to the group ring $\Omega[\mathfrak{G}]$ as right \mathfrak{G} -modules. For the general theory of Galois algebras, see [2] and [3].