On the imbedding problem of Galois extensions

By Norio ADACHI

(Received April 15, 1969)
(Revised Feb. 14, 1970)

Introduction

Let Ω be a field, and k a finite Galois extension of Ω with Galois group $\mathfrak{g}=G(k / \Omega)$. Let $\varphi: G \rightarrow \mathfrak{g}$ be a homomorphism of a finite group G onto \mathfrak{g} with kernel A. Then we have an exact sequence

$$
\begin{equation*}
1 \longrightarrow A \longrightarrow G \xrightarrow{\varphi} \mathfrak{g} \longrightarrow 1 \tag{1}
\end{equation*}
$$

We say that the imbedding problem $(k / \Omega, G, \varphi)$ associated with the exact sequence (1) is solvable, if there exists a Galois algebra $K^{*)}$ over Ω with Galois group $(\mathbb{S}=G(K / \Omega)$ such that:

1) There is an isomorphism π of G onto ($($.
2) k is contained in K, and it is the fixed subalgebra of K under A^{π}.
3) φ is the composite of π with the naturally induced epimorphism of G onto g .
Such a K is said to be a solution of the imbedding problem. (For simplicity we shall write g instead of g^{π} for $g \in G$.)

We shall be concerned with the imbedding problem only when the following conditions are satisfied:

1) The group A is abelian.
2) The characteristic of the field Ω is relatively prime to the order of A.

The purpose of the present paper is to summarize some properties about the imbedding problem, as a preparation to prove the main theorem in the author's following paper.
§ 1. A necessary condition for the solvability of the imbedding problem
1.1. For $s \in g$ choose an element $g_{s} \in G$ such that
*) A commutative algebra K over Ω is called a Galois algebra with Galois group ©f, if the following conditions are satisfied: 1) K is semi-simple, 2) (8) is a group of automorphisms of K over $\Omega, 3) K$ is isomorphic to the group ring $\Omega[\S]$ as right (6) modules. For the general theory of Galois algebras, see [2] and [3].

