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The theory of (commutative) formal groups was initiated by M. Lazard
and J. Dieudonne around 1954. Lazard [11], [12] studied commutative formal
groups over an arbitrary commutative ring by treating the coefficients of
power series explicitly. Whereas Dieudonn\’e investigated formal groups over
a field of characteristic $p>0$ exclusively. He reduced in [4] the study of com-
mutative formal groups over a perfect field of characteristic $p>0$ to that of
modules over a certain non-commutative ring, so-called Dieudonn\’e modules,
and obtained in [5] a complete classification of isogeny classes of commutative
formal groups over an algebraically closed field of characteristic $p>0$ . Later
Manin [16] studied isomorphism classes of simple formal groups. The study
of Xone-dimensional formal groups over $\mathfrak{p}$ -adic integer rings was begun by
Lubin [13] and a number of interesting results were obtained by him and
Tate.

In this paper we first construct a certain general family of commutative
formal groups of arbitrary dimension over a p-adic integer ring. Over the ring
$W(k)$ of Witt vectors over a perfect field of characteristic $p>0$ , this exhausts
all the commutative formal groups. These are attached to a certain type of
matrices with elements in the ring $W(k).[[T]]$ of non-commutative power
series, where $\sigma$ is the Frobenius of $W(k)$ , and homomorphisms of these formal
groups are described in terms of matrices over $W(k)_{\sigma}[[T]]$ . By reducing
the coefficients of formal groups over $W(k)mod pW(k)$ we get formal groups
over $k$ . lt is shown that all the commutative formal groups over $k$ are ob-
tained in this manner. Moreover homomorphisms of commutative formal
groups over $k$ are also described in terms of $W(k)_{\sigma}[[T]]$ -modules by lifting

these homomorphisms to power series over $W(k)$ . Thus we get the main
results of Dieudonn\’e [4] again by the method quite different from his. In
[4] he used tools peculiar to characteristic $p>0$ and his construction of formal
groups was indirect, whereas in our method the relation between formal
groups over $W(k)$ and those over $k$ is transparent and the construction of
formal groups is explicit and elementary.

We now explain briefly how to construct commutative formal groups over
$W(k)$ in case of dimension one. Take an element $u$ of $W(k)_{\sigma}[[T]]$ of the


