On infinitesimal automorphisms of Siegel domains

Dedicated to Prof. Atuo Komatu for his 60th birthday

By Noboru TANAKA

(Received June 2, 1969)

Introduction

Let D be the Siegel domain of the second kind in the space \mathbb{C}^N of N (=n+m) complex variables due to Pyatetski-Shapiro [6], associated with a convex cone V in the space \mathbb{C}^n of n real variables and a V-hermitian form F on the space \mathbb{C}^m of m complex variables. By an infinitesimal automorphism of the domain D, we mean a holomorphic vector field X on D which is complete, that is, generates a global one parameter group φ_t of transformations.

The main purpose of the present paper is to give the details of the results announced in the note [8], establishing some theorems on the Lie algebra $\mathfrak g$ of all infinitesimal automorphisms of a Siegel domain D of the second kind.

Assume that the domain D is affine homogeneous. At the outset we prove that the Lie algebra \mathfrak{g} is endowed with the structure of a graded Lie algebra as follows: $\mathfrak{g} = \sum_{p=-\infty}^{\infty} \mathfrak{g}^p$ (direct sum); $[\mathfrak{g}^p, \mathfrak{g}^q] \subset \mathfrak{g}^{p+q}$; $\mathfrak{g}^p = \{0\}$ (p < -2) and the subalgebra $\mathfrak{g}_a = \mathfrak{g}^{-2} + \mathfrak{g}^{-1} + \mathfrak{g}^0$ of \mathfrak{g} is just the Lie algebra of all infinitesimal affine automorphisms of D (Theorem 3.1). Then we prove that the graded Lie algebra \mathfrak{g}_a is prolonged to a graded Lie algebra $\hat{\mathfrak{g}} = \mathfrak{g}^{-2} + \mathfrak{g}^{-1} + \mathfrak{g}^0 + \sum_{p=1}^{\infty} \hat{\mathfrak{g}}^p$ and that the graded Lie algebra \mathfrak{g} is determined as a suitable graded subalgebra of $\hat{\mathfrak{g}}$ (Theorem 4.1). From a geometric point of view, the Lie algebra $\hat{\mathfrak{g}}$ may be described as a Lie algebra of polynomial vector fields X on \mathbb{C}^N tangent to the Silov boundary S of the domain D (See § 4). In [6], Pyatetski-Shapiro has determined the graded Lie algebra \mathfrak{g}_a in terms of the cone V and the V-hermitian form F. Theorem 4.1 in turn enables us to compute the Lie algebra \mathfrak{g} on the basis of the Lie algebra \mathfrak{g}_a (See § 5, Examples).

In our discussion, it is important that every infinitesimal automorphism X on the domain D is extended to a holomorphic vector field defined on the whole \mathbb{C}^N and tangent to the real submanifold S of \mathbb{C}^N (Proposition 3.1). Owing to this fact, our problems can be connected, to a great extent, with the geometry of real submanifolds of complex manifolds and hence with the geometry of differential systems as developed by Tanaka [9].