The resolution of an irregularity of boundary points in the boundary problem for Markov processes

By Yasunori OKABE

(Received June 9, 1969)

§1. Introduction.

The purpose of this paper is to solve completely one of the open problems in M. Motoo's paper [17].

The object that we shall consider is the boundary problem of Markov processes, which can be formulated in the following way. Let M^{\min} be a Markov process on a space \overline{D} whose path functions stop as soon as they arrive at the boundary V of D (Such a process is called a *minimal process* in this paper). Then, the problem is to determine the class of all Markov processes whose stopped path functions at the boundary V coincide with path functions of the given minimal process M^{\min} .

Let S be a locally compact Hausdorff topological space with the axiom of second countability and D be an open subset of S having closure S and nonempty compact boundary V=S-D. Suppose that we are given a Markov process $M^{\min}=(W, P_x^{\min}; x \in S)$ on S satisfying the following conditions $(M^{\min}.1), (M^{\min}.2)$ and $(M^{\min}.3)$.

 $(M^{\min}.1)$ M^{\min} is a Hunt process on S.

 $(M^{\min}.2)$ $P_{\xi}^{\min}(x_t = \xi, 0 \leq t < \infty) = 1$ for any $\xi \in V$.

 $(M^{\min}.3)$ There exists a measure m_0 on D such that for any $E \in B(D)$, $m_0(E) = 0$ is equivalent to $G^0_{\alpha}(x, E) = 0$ for any $\alpha > 0$ and $x \in D$, where G^0_{α} is the kernel defined by

$$G^0_{\alpha}f(x) = E^{\min}_x \left(\int_0^{\sigma_Y} e^{-\alpha t} f(x_t(w)) dt \right) \qquad (\alpha > 0, \ x \in S, \ f \in B(S))$$

and moreover $\sigma_V(w)$ is the time when the path w first arrives at V; that is,

$$\sigma_V(w) = \inf \{t > 0; x_t(w) \in V\}.$$

Then, our purpose is to characterize the Markov process $M = (W, P_x; x \in S)$ on S whose stopped path functions at V coincide with path functions of M^{\min} , that is, satisfying the following conditions (M.1), (M.2) and (M.3).

(M.1) M is a Hunt process on S.

(M.2) Let G_{α} be the Green kernel of M. There exists a measure m on