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\S 1. Introduction.

The purpose of this paper is to solve completely one of the open problems
in M. Motoo’s paper [17].

The object that we shall consider is the boundary problem of Markov
processes, which can be formulated in the following way. Let $M^{\min}$ be a
Markov process on a space $\overline{D}$ whose path functions stop as soon as they
arrive at the boundary $V$ of $D$ (Such a process is called a minimal process in
this paper). Then, the problem is to determine the class of all Markov
processes whose stopped path functions at the boundary $V$ coincide with path
functions of the given minimal process $M^{\min}$ .

Let $S$ be a locally compact Hausdorff topological space with the axiom of
second countability and $D$ be an open subset of $S$ having closure $S$ and non-
empty compact boundary $V=S-D$ . Suppose that we are given a Markov
process $M^{\min}=(W, P_{x}^{\min} ; x\in S)$ on $S$ satisfying the following conditions
$(M^{\min}.1),$ $(M^{\min}.2)$ and $(M^{\min}.3)$ .

$(M^{\min}.1)$ $M^{\min}$ is a Hunt process on $S$ .
$(M^{\min}.2)$ $P_{\xi}^{\min}(x_{t}=\xi, 0\leqq t<\infty)=1$ for any $\xi\in V$ .
$(M^{\min}.3)$ There exists a measure $m_{0}$ on $D$ such that for any $E\in B(D)$ ,

$m_{0}(E)=0$ is equivalent to $G_{\alpha}^{0}(x, E)=0$ for any $\alpha>0$ and $x\in D$ , where $G_{\alpha}^{0}$ is
the kernel defined by

$G_{\alpha}^{0}f(x)=E_{x}^{\min}(\int_{0}^{\sigma_{V}}e^{-\alpha t}f(x_{t}(w))dt)$ $(\alpha>0, x\in S, f\in B(S))$

and moreover $\sigma_{V}(w)$ is the time when the path $w$ first arrives at $V$ ; that is,

$\sigma_{V}(w)=\inf\{t>0;x_{t}(w)\in V\}$ .
Then, our purpose is to characterize the Markov process $M=(W, P_{x} ; x\in S)$

on $S$ whose stopped path functions at $V$ coincide with path functions of $M^{\min}$ ,
that is, satisfying the following conditions (M.1), (M.2) and (M.3).

(M.1) $M$ is a Hunt process on $S$ .
(M.2) Let $G_{\alpha}$ be the Green kernel of $M$. There exists a measure $m$ on


