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Introduction

In this paper we study some properties of periods of rational forms on a
regular elliptic surface $B(\tau, \sigma)$ of basic type and some related problems. (For

the theory of elliptic surfaces compare K. Kodaira [8] and A. Kas [6]. We
mainly follow their notations.) It is known that such surfaces are suitable
completions of the affine surfaces defined by

(1) $y^{2}=4x^{3}-(\tau_{4k}u^{4k}+\cdots+\tau_{1}u+\tau_{0})x-(u^{6k}+\sigma_{6k-1}u^{6k- 1}+\cdots+\sigma_{1}u+\sigma_{0})$ ,

where we denote by $(u, x, y)$ the variables of the three dimensional affine space
$C^{3}$ and by $(\tau)=(\tau_{4k}, \cdots , \tau_{0}),$ $(\sigma)=(\sigma_{6k-1}, \cdots , \sigma_{0})$ the parameters. We understand
by a period function $W(\tau, \sigma)$ of a rational form of the surface $B(\tau, \sigma)$ the holo-
morphic function of the parameters $(\tau, \sigma)$ of the form: $W(\tau, \sigma)=\int_{\Gamma(\tau,\sigma)}\omega(\tau, \sigma)$ ,

where the rational form $W(\tau, \sigma)$ on $B(\tau, \sigma)$ and the homology class $\Gamma(\tau, \sigma)$ on
$B(\tau, \sigma)$ satisfy conditions of continuity with respect to the parameters $(\tau, \sigma)$ .
Our chief object is to study certain properties of the period functions $W(\tau, \sigma)$ .

We sketch our results briefly. After recalling some basic notions and
definitions of elliptic surfaces needed below, we study in the first chapter the
periods of rational 2-forms on the elliptic surface $B_{0}$ : $y^{2}=4x^{3}-(u^{6k}-1)$ in
details. These periods may be regarded as generalizations of Beta integrals:

$\int_{0^{1}}u^{p- 1}(u-1)^{q- 1}du$ in the theory of hypergeometric functions (F. Klein [7]).

The study of these periods leads to power series expansions of the period
functions $W(\tau, \sigma)$ at the point $(\tilde{\tau}^{0},\tilde{\sigma}^{0})=((0, \cdot.. , 0), (0, \cdot.. , 0,1))$ . We derive
some applications from these power series expansions: the determination of
the rank of ‘ period maps ’ of individual rational forms, etc.

We also know that these period functions are complete solutions of certain
partial linear differential equations $\tilde{D}$ of the second order. In the second chapter
we study the structure of $\tilde{D}$ and some related problems. In \S 4\sim \S 5, we find
a criterion of ‘ regularity ’ for systems of linear partial differential equations.
This elementary criterions means merely that the solutions are ‘ regular ’ if
and only if certain ordinary differential equations, which correspond to the
partial equations in question, are regular in the usual sense ($[c$ . $f.]$ Lemma 5.1).


