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Introduction.

T. T. Frankel [5] applied Morse theory to the Stiefel manifolds using the
trace function. The critical sets in this case are Grassmann manifolds. In
this note we apply Morse theory to the Stiefel manifolds using “ length func-
tion”. We think of Stiefel manifolds as imbedded in Euclidean spaces and
use methods similar to R. Bott [3]. Finally, using some results on P. A.
Smith theory of periodic transformations we show that the Morse inequalities
are equalities. This method is due to Frankel [5]. The CW-decomposition
and the Poincar\’e polynomials obtained for Stiefel manifolds are, of course,
known. For this reason detailed proofs are omitted.

The referee points out that “ the length function “ is essentially the same
as the function used by Takeuchi and Kobayashi [7] generalizing the trace
function of Frankel [5]. The author is grateful to the referee for this and
other valuable suggestions and comments.

Preliminaries.

Let $F$ be $R$ , the field of real numbers, $C$ the field of complex numbers or
$Q$ , the quaternions. Let $U(n;F)=\{A|A\overline{A}^{t}=I_{n}\}$ where $A$ is an $n\times n$ matrix
with coefficients in $F$. The ‘ bar ‘ denotes complex conjugation or the quater-
nionic conjugation as the case may be. Let $U_{0}(n;F)$ be the identity com-
ponent of $U(n;F)$ . Hence $U_{0}(n;F)$ is $SO(n)$ if $F=R$ , is $U(n)$ if $F=C$, and
is $sp(n)$ if $F=Q$ . Let $\underline{u}(n;F)$ be the Lie algebra of $U(n;F)$ . Let $V_{p+q,p}(F)$

$=\frac{U_{0}(}{U}\frac{p+qjF)}{0(q,F)}$ be Stiefel manifold over $F$. If $q=0$ , we get the classical

groups; $V_{p+q,p}(F)$ is the set of all orthogonal p-frames in $F^{p+\underline{q}}$ space with
respect to the standard metric $\sum x_{i}\overline{x}_{i}$ .

The Stiefel manifolds are imbedded in Euclidean spaces as follows: Let
$G$ be a compact connected Lie group with an invariant Riemannian metric.
(We will take $G$ to be $U_{0}(n;F)$). Let $\sigma;G\rightarrow G$ be an involution with the full
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