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\S 0. Introduction.

In this note we shall generalize the results of the author’s previous papers
[7] and [8] to the case of general elliptic boundary problems of even order.

Suppose $X$ and $Y$ are respectively smooth vector bundles over a compact
oriented Riemannian manifold $M$ and its boundary $\partial M$. Let $A$ be an elliptic
partial differential operator operating on smooth sections of $X$ and let $B$ be
a boundary differential operator mapping sections of $X$ to those of $Y$ . We
denote by $A_{B}$ the closed extension of $A$ considered under the homogeneous
boundary condition $Bu=0$ . Under a certain condition posed on the pair $(A, B)$

(cf. \S 3), we construct the Green operator $(A_{B}+z)^{-1}$ in \S 4. Our expression of the
operator $(A_{B}+z)^{-1}$ enables us to know the asymptotic behaviour of $(A_{B}+z)^{-1}$

when $z$ tends to infinity along ray of minimal growth introduced in Agmon
[1]. Using this, we obtain the asymptotic expansion of Trace $e^{-tA}$ when $t\rightarrow 0$

and of Trace $(A_{B}+\lambda)^{-1}$ when $\lambda\rightarrow\infty$ . In the latter case, we of course assume
that the order of $A$ is larger than the dimension of $M$.

The behaviour of the pure imaginary power $A_{B^{i}}^{\kappa}$ of $A_{B}$ is, in general, very
delicate even in $L^{2}$ -theory. The simplest case is treated in \S 6. If $A$ is a
single second order principally real operator and if $B$ is the linear combination
of the Neumann and the Dirichlet condition, then we can prove that $A_{B}^{\kappa_{i}}$ is a
bounded operator in $L^{p}(1<p<\infty)$ space and its norm can be estimated using
the above results. This enables us to determine the domain $D(A_{B}^{\theta})$ of fractional
power $A_{B}^{\theta}(0<\theta<1)$ of $A_{B}$ in $L^{p}$ space. If $B$ includes derivatives which are
tangential to $\partial M,$ $A_{B^{i}}^{\kappa}$ is, in general, unbounded except for $\kappa=0$ even in $L^{2}$

space.
All these results are obtained by using a special class of pseudo-differential

operators treated in [6].
Results similar to those presented in \S 2, \S 4 and \S 5 were announced by

several authors (Seeley [18], Shimakura, Asano and Arima).


