On the asymptotic behaviour of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators

By Daisuke FUJIWARA

(Received July 8, 1968)

§0. Introduction.

In this note we shall generalize the results of the author's previous papers [7] and [8] to the case of general elliptic boundary problems of even order.

Suppose X and Y are respectively smooth vector bundles over a compact oriented Riemannian manifold M and its boundary ∂M . Let A be an elliptic partial differential operator operating on smooth sections of X and let B be a boundary differential operator mapping sections of X to those of Y. We denote by A_B the closed extension of A considered under the homogeneous boundary condition Bu = 0. Under a certain condition posed on the pair (A, B) $(cf. \S 3)$, we construct the Green operator $(A_B+z)^{-1}$ in § 4. Our expression of the operator $(A_B+z)^{-1}$ enables us to know the asymptotic behaviour of $(A_B+z)^{-1}$ when z tends to infinity along ray of minimal growth introduced in Agmon [1]. Using this, we obtain the asymptotic expansion of Trace e^{-tA} when $t \to 0$ and of Trace $(A_B+\lambda)^{-1}$ when $\lambda \to \infty$. In the latter case, we of course assume that the order of A is larger than the dimension of M.

The behaviour of the pure imaginary power $A_B^{\kappa_i}$ of A_B is, in general, very delicate even in L^2 -theory. The simplest case is treated in §6. If A is a single second order principally real operator and if B is the linear combination of the Neumann and the Dirichlet condition, then we can prove that $A_B^{\kappa_i}$ is a bounded operator in L^p $(1 space and its norm can be estimated using the above results. This enables us to determine the domain <math>D(A_B^{\theta})$ of fractional power A_B^{θ} $(0 < \theta < 1)$ of A_B in L^p space. If B includes derivatives which are tangential to ∂M , $A_B^{\kappa_i}$ is, in general, unbounded except for $\kappa = 0$ even in L^2 space.

All these results are obtained by using a special class of pseudo-differential operators treated in [6].

Results similar to those presented in $\S2$, $\S4$ and $\S5$ were announced by several authors (Seeley [18], Shimakura, Asano and Arima).