# A generalization of $\mathbf{F}$. Schur's theorem 

By Alfred Gray

(Received Feb. 13, 1969)

The following theorem, due to F. Schur, is well-known:
Theorem A. Let $M$ be a Riemannian manifold with $\operatorname{dim} M \geqq 3$. If the sectional curvature $K$ of $M$ is constant at each point of $M$, then $K$ is actually constant on $M$.

There are several other theorems of this type; we mention a few of them.
Theorem B. Let $M$ be an Einstein manifold, that is, assume the Ricci curvature of $M$ is a scalar multiple $\lambda$ of the metric tensor of $M$. If $\operatorname{dim} M \geqq 3$, then $\lambda$ is constant.

Theorem C (Thorpe [2]). Let $M$ be a Riemannian manifold with $\operatorname{dim} M$ $\geqq 2 p+1$. If the $2 p t h$ sectional curvature $\gamma_{2 p}$ is constant at each point of $M$, then $\gamma_{2 p}$ is constant on $M$.

Theorem D. Let $M$ be a Kähler manifold with $\operatorname{dim} M \geqq 4$. If the holomorphic sectional curvature $K_{h}$ is pointwise constant, then it is actually constant.

Theorem E (M. Berger, unpublished). Let $M$ be a Riemannian manifold with metric tensor $g_{i j}$ and Riemann curvature tensor $R_{i j k l}$. Suppose

$$
\sum_{i, j, k} R_{i j k s} R^{i j k t}=\lambda g_{s t} .
$$

If $\operatorname{dim} M \geqq 5$, then $\lambda$ is constant.
In this paper we prove a result (theorem 2) which includes theorems $\mathrm{A}, \mathrm{B}$, C , and D as special cases. Although theorem E is not a consequence of theorem 2 , it almost is, in the sense that it would be if a slightly different contraction were used.

We shall use the notation of [1]. Recall that a double form of type ( $p, q$ ) is a function $\omega: \mathfrak{X}(M)^{p+q} \rightarrow \mathscr{F}(M)$ which is skew-symmetric in the first $p$ variables and also in the last $q$ variables. Here, as usual, $\mathfrak{X}(M)$ denotes the Lie algebra of vector fields on the $C^{\infty}$ manifold $M$ and $\mathscr{F}(M)$ the ring of $C^{\infty}$ real valued functions on $M$. We write $\omega\left(X_{1}, \cdots, X_{p}\right)\left(Y_{1}, \cdots, Y_{q}\right)$ for the value of $\omega$ on $X_{1}, \cdots, X_{p}, Y_{1}, \cdots, Y_{q}$. If $p=q$ and

$$
\begin{array}{ll} 
& \omega\left(X_{1}, \cdots, X_{p}\right)\left(Y_{1}, \cdots, Y_{p}\right)=\omega\left(Y_{1}, \cdots, Y_{p}\right)\left(X_{1}, \cdots, X_{p}\right) \\
\text { for } & X_{1}, \cdots, X_{p}, Y_{1}, \cdots, Y_{p} \in \mathfrak{X}(M),
\end{array}
$$

