Parabolic and pseudo-parabolic partial differential equations*

By Tsuan Wu TING

(Received June 13, 1967) (Revised April 15, 1969)

§1. Introduction.

Let G be a bounded domain in an Euclidean *n*-space and \overline{G} its closure. Let $C^k(G)$, $0 \leq k < \infty$, be the class of real-valued functions defined and k-times continuously differentiable in G and $C_0^k(G)$ the subset of $C^k(G)$ consisting of those functions with compact support in G. As usual [1-4], we denote by $\hat{H}^k(G)$ the pre-Hilbert space consisting of functions in $C^k(G)$ with finite k-fold Dirichlet norm, $\| \|_k$, and denote by $H^k(G)$ the Hilbert space being the completion of $\hat{H}^k(G)$ under the norm $\| \|_k$. In a completely similar way one defines the pre-Hilbert space $\hat{H}_0^k(G)$ and the Hilbert space $H_0^k(G)$. In the following discussions the domain G will be fixed. We shall for simplicity write H_0^k for $H_0^k(G)$ etc.. It may be noted that H_0^0 is the space $L_2(G)$.

Consider the two self-adjoint elliptic partial differential operators,

(1.1)
$$L \equiv \sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(l_{ij}(x) \frac{\partial}{\partial x_{j}} \right) - l(x) ,$$
$$M \equiv \sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(m_{ij}(x) \frac{\partial}{\partial x_{j}} \right) - m(x) .$$

It will be assumed that the given real-valued functions $l_{ij}(x)$, l(x), $m_{ij}(x)$ and m(x) are bounded measurable in G and that $l(x) \ge 0$, $m(x) \ge 0$ almost everywhere in G. Further we shall restrict L and M to be elliptic in the sense that there are constants k_L , K_L , k_M and K_M such that almost everywhere in G

(1.2)
$$k_{L}\sum_{i=1}^{n} (\xi_{i})^{2} \leq \sum_{i,j=1}^{n} l_{ij}(x)\xi_{i}\xi_{j} \leq K_{L}\sum_{i=1}^{n} (\xi_{i})^{2},$$
$$k_{M}\sum_{i=1}^{n} (\xi_{i})^{2} \leq \sum_{i,j=1}^{n} m_{ij}(x)\xi_{i}\xi_{j} \leq K_{M}\sum_{i,j=1}^{n} (\xi_{i})^{2},$$

for all real vectors ξ .

^{*} This research was partially supported by the National Science Foundation under Grant No. GP-7374.