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\S 0. Introduction.

The main purpose of the present paper is to exhibit an extensive class of
set-theoretical interpretations of the primitive logic which seems to cover
almost all known set-theoretical interpretations, model-theoretical interpreta-
tions, and truth-value-theoretic interpretations of logics. The primitive logic
has been introduced in my papers [2] and [3].

Throughout this paper, I will denote by upper case letters $A,$ $B,$ $\cdots$ prop-
ositions as well as predicates, and by the corresponding lower case letters
$a,$ $b,$ $\cdots$ the interpretations of the propositions or predicates. The letters
$x,$ $y,$ $\cdots$ are object variables. For any set-theoretical interpretation of the primi-
tive logic LO of the present paper, a class of subsets of a certain set ru is
employed, which can be regarded as the class of closed sets of the space ru
by introducing a suitable topology $\mathfrak{T}$ to $\omega$ . By introducing another topology $\mathfrak{T}^{*}$

to the same space $\omega$ , I define the set-theoretical interpretation of “ implication “

and ” universal quantification ”, which are the only logical constants of the
primitive logic LO. As is shown in my papers [3] and [4], the classical logic
LK and the intuitionistic logic LJ are reducible to the primitive logic LO.
Accordingly, logical constants of the logics LK and LJ other than “ implication “

and ” universal quantification “ can be defined in terms of these two logical
constants in the primitive logic LO. So, the newly defined logical constants
are set-theoretically interpreted in accordance with the set-theoretical inter-
pretations of “ implication ” and “ universal quantification “.

The interpretations of “ $A\rightarrow B$ “ and “ $(x)A(x)$ ” are defined as follows:
Let $\{\mathfrak{T}\}$ and $[\underline{\tau}]$ be a pair of topologies introduced to the same space $\omega$ whose
closure operations are denoted by “

$\{$ $\}$
” and “ $[]$ ‘’, respectively. Let us

further assume that $\{\mathfrak{T}\}$ is a finer topology of to than $[\underline{T}](\{a\}\subseteqq[a]$ for every
a) and that the topology pair $\{\mathfrak{T}\}$ and $[\mathfrak{T}]$ satisfy a certain condition called
“ logical “. (See (1.4).) Then, we define “ $a\rightarrow b$ “ and “

$(x)a(x)$ “ as follows:
$a\rightarrow b=[b-a]\cap b$ ,

$(x)a(x)=\{\bigcup_{x}a(x)\}$ ,


