On the rank and curvature of non-singular complex hypersurfaces in a complex projective space*

By Katsumi Nomizu

(Received July 23 , 1968)

Let M be a non-singular connected complex hypersurface in the complex projective space $P^{n+1}(C)$ with Fubini-Study metric of constant holomorphic sectional curvature 1. In [2] it was shown that the rank of the second fundamental form A of M at a point x of M is determined by the curvature tensor of M at x. Thus the rank of A is intrinsic at each point and is simply called the rank of M.

In the present paper we shall obtain the following results:
Theorem 1. If M is compact and if the rank of M is $\leqq n-1$ at every point, then M is imbedded as a projective hyperplane in $P^{n+1}(C)$.

Theorem 2. Let $n \geqq 3$. If M is compact and if the sectional curvature of M with respect to the induced Kählerian metric is $\geqq \frac{1}{4}$ for every tangent 2-plane, then M is imbedded as a projective hyperplane.

1. Preliminaries. We recall the terminology and a few results from [1] and [2]. Let M be a complex hypersurface in $P^{n+1}(C)$. Let J denote the complex structures of $P^{n+1}(C)$ and M, and let g denote the Fubini-Study metric of holomorphic sectional curvature 1 in $P^{n+1}(C)$ as well as the Kählerian metric induced on M. For each point x_{0} of M, choose a field of unit normals ξ defined on a neighborhood U of x_{0}.

Denoting by \tilde{V} and ∇ the Kählerian connections of $P^{n+1}(C)$ and M, we have the basic formulas (cf. [1])

$$
\begin{aligned}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \xi+k(X, Y) J \xi \\
& \tilde{\Gamma}_{X} \xi=-A X+s(X) J \xi,
\end{aligned}
$$

where X and Y are vector fields tangent to M, h and k are bilinear symmetric forms, s is a 1 -form, and A is a tensor field of type (1,1), called the second fundamental form. Moreover, we have $h(X, Y)=g(A X, Y), k(X, Y)=$ $g(J A X, Y)$, and $A J=-J A$. The Gauss equation expresses the curvature ten-

[^0]
[^0]: * Work supported by an NSF Grant GP-7610.

