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Introduction.

In this paper, we determine the first and second cohomology groups of
the following tori: $G_{m},$ $R_{K/k}(G_{m})$ , and some tori associated with $R_{K/k}(G_{m})(U$

and $V$ defined in \S 2) and discuss relations between them. As an application,
we also determine $H^{2}(k, Z)$ , where $Z$ is the center of a simply connected sim-
ple algebraic group $F$ defined over a perfect field $k$ . Since any simply con-
nected simple algebraic group $F$ defined over $k$ is obtained by an inner twist
from a certain quasi-split simple algebraic group $F_{1}$ defined over $k$ , in order
to determine $H^{2}(k, Z)$ , it suffices to determine $H^{2}(k, Z_{1})$ , where $Z_{1}$ is the center
of $F_{1}$ .

In $n^{o}1$ , we state some lemmas which are well-known. In n’2, we deter-
mine the cohomology groups of some special tori, applying the lemmas to the
case $M=k_{s}^{*}$ , where $1e_{s}$ is the separable closure of $k$ . In n’3 and $n^{o}4$ , we deter-
mine $H^{2}(k, Z)$ and define an $H^{2}$ -invariant of a k-form of a simple algebraic
group. $N^{o}5$ has a nature of an appendix which will explain in a certain
sense the meaning of the table obtained in n’3. Let $K$ be a separable quadratic
extension of an arbitrary field $k$ . We prove that a central simple algebra $B$

over $K$ has an anti-automorphism over $k$ if and only if $\beta+\overline{\beta}=0$ , where $\beta$ is
the class of $B$ in the Brauer group $B(K)$ of $K$. We also prove that $B$ has an
involution over $k$ if and only if $c(\beta)=0$ , where $c$ is the corestriction of $B(K)$

into $B(k)$ .
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\S 1. Preliminaries.

Let $\mathfrak{g}$ be an arbitrary group and $\mathfrak{h}$ be its subgroup of finite index $n$ . Put
$t!=\bigcup_{i=1}^{n}g_{i}\mathfrak{h}$ , with $g_{1}=1$ . Putting


